A BIOECONOMIC YODEL FOR DETERNINING THE OPTIMAL TIMING OF harvest fon the morte carolina may scallop fishery

## By

Robert L. Eelloge. J. E. Ensley Jr. and Thosins Johnson

Department of Econonics and Bpsinest<br>North Carolina Stite Diversity<br>Baleigh, North Carolina

This work was sponsored by the Office of Sea Grant, NORh, U.S. Department of Comerce, under Grant No. NA83AA-D00012 and the North Cerolina Departaent of Administration. The D.S. Government it anthorized to produce and distidute reprint: for governeental purposes notyithstanding any copyright that mey appear hereon.

WNC Sea Grant Collega Publication dNC -SG-85-25

Noverbor 1985

TABLE OF CONTENTS
Paze
CRAPTEP 1. IMTRODOCTEON ..... 1
CHAPTER 2. A DFNAMIC SBASONAL BAPVESTIMG MODEL ..... 3
CHAPTEP 3. APPLICATION OF THE SEASONAL HARYESTING MODRL TO THE NORTH CAROLINA BAY SCALLOP FISBERY ..... 13
CHAPTER 4. INCORPORATLNG UNCERTAINTY LNTO THE MARAGEAENT DECISION ..... 42
CHAPTER 5. SUNAARY AND CONCLUSIONS ..... 54
REFRRPNCES ..... 55
APPENDIX A. SOLUTION ALGORITHI FOR THE BAY SCALLOP RAPVESTING PROBLEA ..... 59
APPENDIX B. OPTIMAL SOLUTIONS TO THE BAY SCALLOP BABVBSTIMG PRORLEH ..... 63

## CHAPTER 1. INTRODUCTION

The role for state regulation of fisheries arises from the comino property/open aceess mature of the resource. Without property rights, individual fishermen ignore the value of the productive capacity of the stock (also called the opportonity cost of harvesting). Instead, fishermen attempt to harvest as much as they ean is fast as they can when expected net retura is positive. Dnder these conditions, serions depletion of the resonrce can occur. The task facing the fishery manager is the pronigation of regulations designed to ensure continaed harvests and, if possible, to enhance the value of those harvests. The fishery manaser wit also be concerned about the trade-off between gains from regalation and the costs of regulation (such as enforcement costs, information costs and administritive costs). Most importantly. the fishery manager does not mant to promugate regolations that are incongistent with optimil harvest strategies.

Bioeconomic models and optinal control theory can be used by fishery managers to helpattain these goals. Tith specified objective to be optimized (such as maximizing net revenue) and specified control variable, or regulatory device (such is the season opening date), optimal control theory can bo osed to solve for the optimal hariest of the resonrce over time. The procedure requires that both the biological and economic aspects of the fishery be incorporated into bioeconomic model. Important components include the objective function, the price function, the fish production function, the cost function, and fanctions describing the population dynamics of the resource stock. Regulations that are based on the solotion of the optinal control problem will proserve stock for continned harvests, provide incentives for fishermen to hariest rationally, and improve the overall value of the harvest. By comparigg resindsfor the noregulated case with festults for the optimal solution, the nanager can get an estinate of the economic gains from regalation. This informetion is invaluable for deciding if regalations are cost effective.

The fisheries mangement problen is a problem in capital theory, which was defined by Dorfenn (1969) as "the econonics of time." The fish popalation can be viewed as a capital stock that, life "conventional' or man-made copital, is capable of yielding consumption flow through tipe. The managenent problem thot becomes one of selecting an optinal consumption path, or harvest path, through time (Clark and Monro 1975). Optimal control theory is used to solve for this optinal path. Infact, Dorfina (1969) bas shown that optimal control theory is formaly identical to capital theory by deriving the principal theorem of optimal control theory-called the marimun principle-by means of economic analysis. There are a number of recent worls Fhere theoretical optimal control models are advanced (for example, Clark 1976; Fuang et a1. 1976; Strand and Hueth 1977; Clark and Manro 1980; Levhari et al. 1981; and Conrad and Castro 1983), but fem examples of applications to specific fishery problens.

The purposes of this paper are 1) to present general harvesting model that can be used to address the problem of when to open and close the harvest season for a seasonal (interaittent) fishery, 2) to apply the model to the North Carolina bay scaliop fishery and 3) to incorporate nicertainty into the manager's decision process using simulation and stochastic dominance rales.

The segsonil fisheries model is presented is Chapter 2 nind applied to the bing scallop fishery in North Cerolinain Chapter 3. In Chepter 4. ficochistic
 example of hov ecomonic decision theory cin enhance the pie of optinal control modelt.

CHAPTER 2. A DYRNAIIC SEASONAL HARYESTING MODEL

### 2.1 The General Model

A seasoan fishery can be definedam one in wich there are matoraliy occuring intraseasonal viriations in yields. For these fisheries, economic inefficiency might resalt from harverting the fish too oarly in the gear. In the comon property/open access sitantion, individal fishermen are motivated to harvest seasonal fisheries early- when stocks are high and before they are depleted by other fisheraen-even though the valuo of the catch may be much greater later in the sesson (Agnelio and Donnelley 1977). The seasonal harvesting model presented in this aection onn be solved for the optimel season-opening (and sesson-closing) schedule such that net revenue for the fishery is enrimized.

The general fisheries mangepent model for a seasonal fishery can be formally tated at follows:

Feastbility constraints and conditions on fanctions may be desirablefor some problam. For instanco, politically infeasible solution sets can sometinet be incorporated into the problen in the form of constraints on the state variables. (See Eamien and Schwartz (1981) for detaila regarding necestary and tufficient conditions, endpoint conditions and other conditions needed for naique solutions.) Tho model can be extended by inclinding stochastic elements. Stochasticity is important, but rigorous treatment of stochasticity in applichtiont is fecondary to refinement of the biological and econonic models.

Thi: general model has been formalated with continuous time nad an infinite time horizon. Discrete optimal control models can iso be formalated (Johnson 1985; Clark 1976). ts weli as finite terminal time problems. The essential difference betyen $x$ ie of finite terminal time and an infinite time horizon is that the infinite time horizon leads typically to en option tiendy state, or long-run equilibrim solution, Fisheries with stront stock-recreitment relitionthips are bet modelled with an infinite time horizon, wheress fish popalations that flactuate in abopdance from year to year independent of harvest ectivities-predoninantly becanse of changes in habitat availability or environnental conditions-cen often be modelled effectively with finite time horizon (where the time interval is a single harvest setson).

The model is applicable primarily for single yedr class fisheries. but It could be uted for multi-cohort fisheries in special cases. The indicator function would serve at "pulse fishing" control (seet Clark 1976. pate 174. for discustion of this type of control variable). Hovevef, semsonal control over the harvest period alone wodid probably not be the control mechanism most suited for miti-cohort fisheries, since growth rates and user costs would probably vary among the cohorts. Regalations on cohort-specific harvest rates--perhaps in conjunction with season closings--would be generally more appropriate for muti-cohort fisheries (see optimal harvest recommendations of Conrad (1982) and correction by Haiao (1985),

### 2.1.1 The Objective Functional

The objective functional is the part of the problen that is to be meximized by telection of an "optinir" control vector. It contains most of the econonic espects of the problan. In the above model, the objective is to manipulate the control varisble so at marimize the discounted value of get revenue. The objective fanctional is

$$
\int_{0}^{\infty}[P(Q, t, w) Q(x, t, y)-C(x, t, y)) e^{-6 t} \phi(t) d t
$$

In words, this represents the sum over all future time poriods of the net revenue (total revenue minds cost) from harvest of the fishery resource denominated in current dollars (i.e., the present vaiue).

Ideally, the objective function wonld represent the sum over all futare tipe periods of the net benofits to society from the production and consumption of the fishery resonrce. Benefits wonld measmethe aggregate subjective valuesplaced onfish consumption by each menber of society in common anits of mesture. Costs of production mopid be measured according to the valge of alternative ases of the inputs (opportunity costs). With costs and benefits defined in this way, the maxinizing solution monid be optinal to society as whole (minimmesocial welfare). Thefomayberminers" and "losers" restuting from regulation, but if regtiation is justified, the losses would be outweighed by the gains.

Bot this idealistic approach is not possible in practice for two besic reasons. First, benefits and costs are inherently subjective and canot be observed directly. Second, even if they could be observed and measured, the most that can be obtained is an ordind measture (an ordering of preferences), whereas a cardinal mensure is required to trade off benefits and costs anong producets and consumers. Consequently, the theoretical objective (in terns
 operational-objective. The post common appronch in fisheries problems (und the one used in this otody) is to substitute net revenaefor society's aet benefit function. (Marimizing net revenue is equivalent to parimizing producer surplas then the price fanction is infinitely elastic.)

Of contse, net revenue is not perfoct measure of social value becanse it assumes that the marginal itility of money is the same for all individuals in society and atall pointsin ifine. The value of anextrafish to poor man is taken to be the same as the value to a rich man. Thas, the model is insensitive to income redistribution. To be responsive to allocational issoes related to regulation, it would be desirable to incorporate income distribution features into the objective function. Incorporation of social and political objectives is also desirable (Crutchfield 1972: Bishop et al. 1981; Wangh 1984). The more "realistic' the objective function is, the more oseful the results. Although extenaion of the objective function to include these important factor: is theoretically posaible, it is difficult to do in practice. To date, little work hes ben done in this aren in application to specific fishery problems.

### 2.1.2 The Price Function

The price function (an inverse demand fonction), $P(Q, t, w)$, describes the watket price of the fishery product. It is typically in onits of dollars per pound. It is ustally modelled as aftaction of both quantity and time, of time only, or as constant. In addition, exogenous variables anch os personal income and pricef of substitotes aight be incladed.

The most comon forn of the price function in fisheries problens is infinitely elastic, that is, the fishermen and the regalating athority are price takers. This occurs when the quantity produced within the jurisdiction of the manging anthority is snill felative to the total harvest, and thos changes in local harvests have ifttle or no impact on price. (Opiy the population vithin the juriadiction of the mataging authority is modelled in
the optimal control problem, then price is function of quantity, it may be desirable to substitate another objective function in place of discounted Het revenue becnase consumer surplus is not included in the net revenue calcalation.

### 2.1.3 Tho Production Function

The production function, $Q(x, t, y)$, specifies the rate of output of process over time in teris of its inpots. A typical fisheriesproduction fanction woold include the fish tock and fishing effort inputs (vessel size and number, orev size and skill, efc., asually represented by single index 1sbellod "effort"). A common representation of the production function in the fisheries literature is the harvest rate, h(t). In this form, the harvest rate also serves as the control variable, where it is assumed that the social manager has complete control over prodoction. It is also popalat to represent the harvest ate as production fanction with two inputs, effort (E(t)) and the fish stock ( x ), ws follows:

$$
Q(x, t, y)=h(t)=q E(t) x(t),
$$

Where $q$ is a "cstchability" coefficient and is peeded to transforn $E(t)$ (measured in noninal teras. toch as number of vessels of number of fishermen) into a fishing mortality rate. This is sometimes referred to as the 'catch per unit effort hypothesis" (Ciark 1976). E(t) q represents fishing nortality, since it is the proportion of the population size represented by the catch. Althogh this production function is popular in fisheries work, there are some important mstumptions associated with its ose: non-saturation of fishing gear, no congestion of fishing vestels, and uniforn distribution of the stock (needed to guriantee a constant $q$ ).

A more general fanctional form for the production function is $\phi(x) \psi(E)$, where $\Psi(E)$ defines the effect of fishing effort on atock (the mortality rate), and odefines the total fishing mortality gemerated by acting on $x$. This generaiform of the production function is discussed by Clark (1976) and Hannesson (1983). Relating this functional form to the catch per puit effort hypothesis, $\quad \geqslant(E)=q E(t)$ and $\quad$ ( $x)=x(t)$. Fishing effort is taken here to be conposite inder of inputs consisting of fishint skills, size of vesselt, crevsixe, fuel, etc. Alternatively, this inder can be disiggregated into its constityent parts. These variablef can then be modelled either as exogenous variables or, if regulated by the managing anthority. included at controls.

### 2.1.4 The Cost Function

The cost function, $C(x, t, y)$, defines the total costs of producing. or harvesting, thefish. It is often represented in terms of cost per fish
harvested, $C(x)$. The harvest rate, h(t), is then matiplied times the cost per fish harvested to obtain total costs:

$$
C(x, t, y)=C(x) h(t) .
$$

An aternative representation of costs is cost per unit of effort, $C(E)$, which is then multiplied by fishing effort to obtain total costs:

$$
C(x, t, y)=C(E) E(t) .
$$

The first representation is frequentiy used in theoretical work therens the second is used more in empirical stodies (includint the present study).

Ideally, the cost function mould measure the ppportnpity costs of inputs, and not just the acoonting coste. For fuel, food and other inputs that can easily be put to use in other segments of the population, the ariket price is a food estimate of the opportunity cost. But aesuring the opportunity cost of labor and of the bithly specialized gear often uted in fisheries ts difficult. The opportunity cost of fishermen is the social value of that their labor would produce in its next-best alternstive ose. The incones received from fishing are usully not a sood measure of opportunity cost, but are, instead, the anonnt necessary to keep them working (Anderson 1977), Moreover, opportanity costs vary considerably fron fisherman to fishernan and oven from weok to weok.

### 2.1.5 The Discounting Function

A disconnting function, $e^{-6 t}$, is required in the objective functional becanse benefits from the fishery aro boing added up over tine by the integration process, and they mast be in comon units of value for the sum to be legitimate. The most general form of the disconnting function is

$$
e^{-f_{1}^{t} \delta(s) d s},
$$

Where $s$ is the damen variable of integration and 6 is the instantaneous discount rate. (If $t$ is in units of yests, then $\delta$ is an andual discount rate.) In thit form, the disconnt rito is allowed to vary over time.

This form is never used in applications, hovever, becanse 1) the manner in which 6 (t) changef over time is not known, and 2) the problem becomes difficult mathenatically when $\delta$ is other than a constant. Consequently, the discounting function usod is typically $0^{-6 t}$.

An increase in the disconnt rate leadz to fater depletion of enhanstible resonices, and a decrease leads to atower doplotion. The choice of an appropiate value for 6 is the subject of controversy
(Mendelsohn 1981). Whese disconnt rate showid be asedt The fisheraan's The banker's? A social fate of time preference? The problen is that all of the consurers and producors involved have different opportanity costs of investent (some are tender: and sone are borrowerf, for exaple). Leterminins one value to represtnt all of society is difficult. The value chosen for $\delta$ is very important for infinite time horizon problent, but it is lest important when the time horizon is less than arar.

### 2.1.6 Eqnations of Motion

The equations of motion, $\frac{i}{i}$, comprise the biological sector of the fisheries wanagenent model. The equations of motion define hov the state variables, $\mathrm{I}(\mathrm{t})$, wove through tine. In fisheries probles, the state variables usaally define the popalation dynamics of the species or cohorts involved. At least one equation of motion for each state variable is required. When several state variables are present, the equations of motion are represented by ayster of differential equations. An 'initial condition" is neoded for each equation of motion in order to solve the systen of differential equations.

The oquations of motion represent constraints on the avidlability of the resource; hence, they are often tefetred to as "resonrce constraints." A renewable resonrce (such as fishery) cannot instintiy replace the stock thet is harrested. It takes time to replenish the population. This process usially depends on the absolnte tock sixe, vater quality varimbles, habitat availability, food availability, predatort and other factort. If modelled fully, the equations of motion more aptly conid be called "ecosystem contriaints." since they represent her the ecosysten (or rather, a subset of the ecospsten) vonld respond to arescribed harvest rate of one or more of the species involved.

The presence of the population growth function, $F(x, t, x)$, in the equations of motion is what desitnates the resource as "rionewable" resonfce. In goneral, frowth functions are nonlinoar and cyclical mhen spawing and recraitment occur durint a particalar time of the year.

Inclusion of water tamperature in the grovithanction is especialiy important. Fish are cold-bloodod, and thes their frowth and metabolic rates are determined predominentigby चiter temperature. For this reaton, Bell (1972) and oponrke (1971) incinded temperature in their popilation equations, and Hall (1977) extended the Schatifer yield model to italinde tomperatore. Loucks and Sutcilife (1978) oberved correlations between ocen temperatores, tobsequent catch of cod and yellowtail flonnder, and fishing effort. Sistonvine (1974) domonstrated that Firiability in catch statistics of the yollowtail flounder fishory correlated well with three and fonr year movint averiges of atmospheric temperature. Fishery model that ignore the effect of tenperature andor other environenental infinences will nover enjoy "'tood fita" when estimated. Note also that contiantig changing eppironental infinencos-speh at temerature-preciude the establishment of an equilibrium state, at least in the sense of obtaining sustained gields.

The natural mortality function, M(x,t,z), is theoretically a function of popolitionsize, water quality variables, the ebundance of predators and time, Because of data constraints, however, natural mortility functions used in practice are usualymuch simpler. Mortalityfrofishint activity is simply the fish production function, $Q(x, t, y)$.

### 2.2 A Modified Model for Sinalo Year_Clas Fisheries

The model can be sieplified by restricting it to represent single year class fisheries there the stock-recrititent relationship (ombodied in F. the population growth function) is either fully protected by regulations that prohibit harvesting during the spawing seation or where the stock-recruitrent relationship is overwhelmed by environemtal factor:. The preponderance of single fear class fisheries falls into one or the other of these two groups. This simplification affects the seatonal harvesting model by changing the infinite time horizon to finite time horizon, oqual to the potential or natural season length. The finite time horizon if indicated byt=Tin the model.

Additional simplification can be obtained by defining $a$ to be in terms of numbers of fish rather than in bionass nita (pounds). Thit does not alter any of the fundasental characteristics of the model, but pernits tho model to be expressedin atimpler form. The price variable wot be in unitt of dollars per fish, rather then in dollars per pond. This is acconpilithed by multiplying $P(\boldsymbol{Q}, \mathrm{t}, \mathrm{w})$ (in untts of dollars per pond) by tize function for individuals in the popalation (in onits of potnds per fish). This size
 environnental variables (especially mater temperature) and time.

The population growth function, $F(x, t, x)$, mist also be in units of nubler of fish. Since the stock-recritimont relationship has been totumed away, this function consequentiy reduces to a function of $z$ and $t$ only$F(x, t)$. Fnife-edge recruttment (when individualis bocome available to the fisbery $\boldsymbol{t} 11$ at the same tine) is modelied by setting $F(x, t)$ equal to zero for
 $t) 0$ represents a recruitecnt pattern over tiet.

The control model is now in the form of model for an erhanstible resource. The state vartable, $x$ (the number of fish), cannot increase during the tien horizon of the control problon except according to prefcribed recruitment pattern. It can decrease either by natural mortality, M(x,t,z), or fishing mortality. $Q(x, t, y)$. Incorporating these simplifications into the general model, the seasonal harvesting model for fimple year clase fisheries is formally presented as:

$$
\begin{aligned}
& \text { maximize } \\
& \text { with respect to } \\
& \text { \$( } \mathrm{t} \text { ) } \\
& \text { such that } \\
& P V=\int_{0}^{T}[P(Q, t, T) g(x, t) Q(x, t, y)-C(x, t, y)] e^{-8 t} \phi(t) d t . \\
& \mathbf{i}=\mathbf{F}(x, t)-M(x, t, z)-Q(x, t, y) \quad(t) . \\
& x\left(t_{0}\right) \text { and } t_{0} \text { given, } 0 \leq t \leq T \text {. }
\end{aligned}
$$

It is assmad that the decision tegatding Then to begin harvest is wade prior to the potentipl harvest semson and that, once made, it is irrevocable. That is, the positbility of adaptive pongefmentis ignored. In actual practice, however, the seeson opening/closing schedrie conld be re-issessed at any time if inportant additionit information is mogpired.

The above model can be applifd to mitiplespecies when more than ope species ts volnerable to ciptore by the harvestimg operation. For example, severnl speciec of shrimp can be incinded, each with a different state veriable, tize function. etc. Predator nnd prey species can be included as चe11. Catch of incidental (non-target) spocies, which osadily hove iittie or no difect oonpercisi pilue at thetime of coliection but which may have conercial valpe at liter date, can be iefiuded in the problem by adding the appropriste tquations of motion and assitning vilie to the "bycatch" on
 Waters (1983) for an example of an economic analysis of the foregone vilue of bycatch of ineature shrisp in relation to proposed restrictions on the tieint of harvest.)

### 2.3 General Method for Solying the Segangl Heryesting Model

The seasonal haryesting model developed in the last fection can be Written in general terms by mppresting all exogenons variables and conbining functions speh as matzet price, tize, etc. $\operatorname{la}$ follows:

$$
\begin{aligned}
& \text { with refpect to } P V=\int_{0}^{T} I(t, I(t)) \operatorname{Cin}(t) d t \\
& \text { such that } \quad \mathbf{I}=f(x(t), t)-Q(x, t, y) \quad(t) \\
& x(0) \text { siven, } x(t) \geq 0 .
\end{aligned}
$$

Relating these ters to exprestions used in Soction 2,2 , we have

$$
I(t, I(t))=[P(Q, t, \nabla) g(x, t) Q(x, t, y)-C(x, t, y)] e^{-6 t}
$$

and

$$
f(x(t), t)=F(z, t)-N(x, t, z) .
$$


 fisherias are involved, T can bo thonghtof as the tine when any rebaining stock "disippeitit." Fishing would cease prior to time T becarse of mprofitability.

The maximumprinciplotechnique it psed to solve this problem (C1ark 1976; Intriligator 1971; Eamien and Schwartz 1981). The maximumprinciple says that the optimal control can be obtained by maxiniziog function called the "Eapiltonian"' at each monent over the time horizon of the problem. Here, the Eamilonian function is defined as

$$
\begin{aligned}
H(t, x(t), \lambda(t), \Phi(t))= & I(t, I(t)) \Phi(t) \\
& +\lambda(t)(f(x(t), t)-Q(x, t, f) \varphi(t)\}
\end{aligned}
$$

$\lambda(t)$ is vector of edjoint, or co-state variablot. There in an adjoint variable for each state variable in the problet. Since the objective functional is in terns of get revenue and the ctate variable is a quantity, each adjoint variable has tho dimension of apice, which is called the "shedor" price of the state variable (Intriligator 1971). The shadow price is the monetary value of changes in the state variable. In other words, it is the value of an idditional nit of and thos is acatite of the productive value of the stock. It is also called the marginal user cost. It is called a "shadow" price beoanse it is an implicit cost; the manager does not actuality pay it. Given this econontc interpretation of $\lambda(t)$, it is clear that $\lambda(t) \geq 0$ and $\lambda(T)=0$ in order for the Haniltonian to be manimized.

There is also an economic interpretation of the faniltonian. The Haniltontan at time $t$ is the not revenge at time (the net value of the catch) plus the value of the changes in the tite variables at tine t (the productive valne of the stock). In other words, the Habilionian represents the total rate of increste of total assets, which in turn is equal to the value of accumated dividends (the first tern) plos the value of chages in capital assets (the second term) (Clark 1976: p.104). Note that in order to maimize the Baniltonian, the decision mater mot know the vilie of $h$ at each moment during the time interval. Farthermore, the value of the familtonian at $T$ must equal rero. Otherwise, it would not be optimat to top fishige at T, which is required by the problen formulation. of course, the Haniltonian can also equal zero at any tine prior to $T$.

The solntion is found by solving for $4(t), \lambda(t)$, and $x(t)$ that sitisfy the following necessary conditions:

2) $i=\partial H / \partial \lambda=f(x(t), t)-Q(x, t, y) \quad \Phi(t), \quad \quad X(0)=x_{n}, \quad$ and
3) $\dot{\lambda}=-\partial E / \partial x=-(\partial I / \partial x)(t)-\{\partial f / \partial x-\Phi(t) \partial Q / \partial x\}(t), \lambda(t) \geqslant 0$,
4) $\lambda(T)=0$ and $H(T)=0$.

Since the Hanilobian is linemr in the control variable, tho first condtion-maximiziat the Faniltominn-can be met by aisply setting $\boldsymbol{t}=0$ or $\phi=1$ depending on whether the Hamiltonian is positive ( $\Phi=1$ ) or negative ( $\quad$ co). Such solution is known as ang-bang control. This condition can be expressed nsing switching function:

$$
\Phi(t)=\left\{\begin{array}{lll}
1 & \text { if } I(t, x(t))-\lambda(t)(f(x(t), t)-Q(x, t, y)\}) 0 \\
0 & \text { if } I(t, x(t))-\lambda(t)\{f(x(t), t)-Q(x, t, y)\} \leq 0 .
\end{array}\right.
$$

The stitchint function depend: on $x(t)$ and $\lambda(t)$, which are obtined by solving the differential equations, and on the erogenous variableathat determine the catch rate and costa. In general, this ailimen colving a systes of 2n iniltaneous equations. where $n$ is the number of state varinbles.

The above necessery conditions are not mfficient conditions, however. If $\Phi$ ts tivitched to zero before time $T$ (which waid gitulig be the case), the problom becones a free end time problop. With a fixed end the problem. the terminal, or trantversality, conditions are the boundary conditions for 2. With free end tine problen, iterntive techniquos are required. Valnes for $\lambda$ at $t$ ite zero aro selected until the one resifting in the optiman present value is found. These neceseary conditions do provide that once the appropriate $\lambda(0)$ is determined, the solution of $\subset(t)$ will be the optigal solntion.

CHAPTER 3. APPLICATION OF THE SEASONAL HARVESTING MODEL TO THE NORTI CAROLINA BAY SCALLOP FISHERY

### 3.1 Description of the Fishery

The bay scallop fishery in North Carolina is an annal winter fishery. traditionally opening in December and extending through early spring. Bay scallops spawn in their first year and nost do not survive to spawn a second year. Harvesting is prohibited during the spawning period th the fall to ensure continued harvests in subsequent years. The state regulatory agency (North Carolina Department of Nataral Resources and Conmonity Development, Division of Marine Fisharies) controls the season opening. Other controls inclode quotas. restrictions on the days during the veek when harvesting is allowed, closure of the comercial fishery on weekends, restriction of fishing to deylisht hoors, and certain gear restrictions designed to provent destraction of the habitat. Catch limits and the opening dates for harvest seasons since 1968-1969 are sumarized in Table 1. Prior to 1969 there were no catch liaits; catch limits were jmposed only after videspread use of the scallop dray resulted in increased harvest rates, which sometimes exceded the processing capacity (Dennis Spitsbergen, Division of Marine Fisheries, personal commication).

The fishery is predominantly small-bott fishery (ander 25 feet) becanse bag seallops 1 ive in shallow water. Bay scallopsare harvested primarily by use of scallop drag (dredec or sctape). This device consists of a frame aboot yard wide with retainer bat of two-inch bar aesh netting. Scallopers pulifrom one to four drage behind a motorized boat, with the most common namber being two. Scallop drags were prohibited fron 1935 to 1965 . During that time fishermen ited foops or rakes to collect scallops. Today these methods are usualy linited to areas inmecessible by boat or to periods of low tide. Use of feallop drags with teethor drags weighing greater than 50 pounds is prohibited to prevent destruction of the sea grass beds.

Traditionaly, fishing has been 1 lowed only on two to three days per week during the first tro months of the season. As the semson progresses, allowed fishing days may be increast to five dayt per week. Conercial fishing for seallops is not pernitted on Saturdays and Sundays. Scalloping for private consonption (recreational fishing) is allowed on weekends duriag the open season if barvested by non-mechanical means (rakes, dip nets or by band) and the catch is limited to one-half bushel per ficherañ with a maximum of one bushel per boat.

Bay scallops harpested in North Carolina are procotzed in the local commuity. Scaliops may be shacked by the fishernen thonselves, or the shocking may be contracted to local fish hoose (processing plant) and the weats sold by the fishernan to the wholesaler, or the the 11 stock may be sold directly by the fishermen to a local fish honse. All scallop processort, including fishermen who shack their own scallops, must comply with regulations of the North Caroling Department of Fealth, Shellfish Sanitation Section, whichestablishes permit systenfor the shacking, banding and packaging of seallops. Fricke (1981) reported that in 1977 approxipately 28

Table 1. Catch statistics ind smmary of regnintions on season openings and catch 1 inits for the bay seallop fishery in North Carolina from 1969-1983. (Data from the National Marine Fisheries Service and the North Carolina Division of Marine Fisheries.)

| Year | Total 1andings: for the horvest sesson ${ }^{\text {a }}$ (popnds) | Total ex-vessel value for the hervest season (dollart) | Dete of teston optning | $\begin{aligned} & \text { Catch } \\ & \text { limit } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1968-69 | 692.290 | 415,000 | Dec 2 | None |
| 1969-70 | 154,783 | 110,000 | Dec 1 | 20 |
| 1970-71 | 32,972 | 20,000 | Nov 30 | 20 |
| 1971-72 | 184,652 | 150,000 | Dec 6 | None |
| 1972-73 | 848 | 1,272 | Dec 11 | None |
| 1973-74 | 229,600 | 210,000 | Dec 3 | 20 |
| 1974-75 | 117,888 | 93.708 | Dec 2 | 40(20) |
| 1975-76 | 273.572 | 192,427 | Dec 1 | 40(20) |
| 1976-77 | 225,012 | 473,661 | Dec 6 | 40(20) |
| 1977-78 | 269,708 | 458.227 | Dee 5 | 40(20) |
| 1978-79 | 130,928 | 299.040 | Jan 15 | 20 (10) |
| 1979-80 | 306,319 | 1,073,006 | Dee 3 | 40(20) |
| 1980-81 | 226,479 | 817.396 | Dec 8 | 15 |
| 1981-82 | 128. 111 | 268.985 | Nov 30 | 15 |
| 1982-83 | 161,327 | 494,964 | Nov 29 | $\pm 5$ |

[^0]percent of the bay scallop harvest was told as fresh scallops to restanrants in Carteret County, while the remaindar (72 percent) was quick-frozen, canned or cooked before sale.

In good years, the bay teallop fishery has provided seasonal beploytent for 3,000 to 5,000 persons and contributed at mob as tenth of the incone of a full-tiae fishernan (Fricke 1981). In addition to full-time fishernen, many individuals who have full-time jobs outside the fishing industry harvest scallops diring annal leave or seasonal unemployent periods. Season ladings of bey scallops from North Carolina witers have varied considerably, ranging from less than 1,000 pands (meat weisht) to nearly 700,000 pounds since 1969 (Table 1). Landings have been typically in the 100,000 -pound to 300,000 -pound range. Although the bay scallop fishery in North Carolina is important locally, it usualig constitates less than one percent of the annual scallopgield in the United Statef, and an even seallerpercentage of the total supply of scallops when imports are considered.

### 3.2 The Madel

The seneral seasonal harvesting model presented in the previous chapter was mapted for application to the North Carolina bay scallop fishery. The equation of motion was simplified to include only the harvot rate. Since there is no recrifitment in terms of mubers during the potential harvest stason, $F(x, t)$ is zero. Natural mortaility during the potentinl harvost stason, $M(x, t, z)$, was asumed to be zero as well. Additionaly, it is postulated thet the production fanction can be represented by the catch-per-nnit-effort production function, and that the cost fanction can be reprosented by cost-per-nnit-effort function. Incorporating these modifications into the problen resolts in the following model for bay scallops:
where $P(Q, t, w)=$ the matket price equation in dollars per pound,

$$
\begin{aligned}
& 0=\text { quantity (pounds) of the North Carolina bay scallop catoh, } \\
& w=\text { vector of erogenons variables in the market price equation, } \\
& z=\text { vector of erogenons environemtal rariables, }
\end{aligned}
$$

$$
g(z, t)=\text { the scallop size equation in ponnds per scallop. }
$$

$$
\begin{aligned}
& \text { maxisize } \\
& \text { with respect to } \\
& \text { © ( } \mathrm{t} \text { ) } \\
& P V=\int_{0}^{T}[P(Q, t, W) g(x, t) E(t) q x(t)-c E] e^{-8 t} \quad \text { (t) } d t . \\
& \text { such that } \\
& \dot{I}=-E(t) q X(t) \Phi(t) \\
& x(0) \text { given, } 0 \leq t \leq T \text {, and } x(t) \geq 0 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { E(t) } q=\text { fishing mortality }, \\
& c=\text { cost per mit of effort, } \\
& x(t)=p o p a l a t i o n ~ s i z e ~ i n ~ n u m b e r s, ~ \\
& t=\text { time in units of week } \boldsymbol{t} \text { tioting from Decenber } 1 \text {, and } \\
& \Phi(t)=\text { the decision variable }(\boldsymbol{\phi}(t)=0 \text { implies a closed sesson and } \\
& \text { (t) }=1 \text { implies an open season). }
\end{aligned}
$$

The potential haryest sesson is defined to span from Decenber 1 ( $t=0$ ) to March 31 ( $t=T$ ). E( $t$ ) is a standard measore of fishing effort and is the catchability coefficient for the deaignated wit of effort. The weelly discount rate, 6 , was set equal to 0.001827 for this study, which is equivalent to an anmal disconnt rate of 10 percent. This is meal rate (that is. the rate after adjuting for inflition). A renl rate is required here because price and cost are in units of aninflated dollars (1967 dollars).

Each of the components of the harvesting model (soch as the market price equation, the size equation, etc.) will be discrised in detail in the mext section. The calculation of the optimal hurvest sofon will then be presented in Section 3.4 and research needs will be discussed in Section 3.5 .

### 3.3 Components of the Model

### 3.3.1 Ex-vessel Price Equition

There are three species of seallops hervested in the United States-bay scallops, sen scallops and calico seallops. Sen scallops are harvested in the northeast AtIantic Ocesn by U.S. and Candian fishermen and constitote the balt of the total scallop sopply. Calico scallops are harvested prinarily off the coast of Florida. Bay teallops are harvested primarily in North Carolina, New Tork, Massachosetts and Mhodo Island. Bay scallops represent less than 7 percent (since 1976) of the U.S. seallop supply. The seats of the three species have neariy the ante properties except for size; sea scallops tend to be lager than bey scallope and calico scallop:.

The extent to wich the market place discrininates among the three species is not clear. The three species are probably close substitutes for some nses and perfect substitutes for other uset. Highest ntional prices occur for bay scallops and lowest for calico scallops (Sonth Atlantic Marine Fishertes Council (1981: Table 9-4). (In North Carolina, however, higher exvescel prices are observed for sea follop: than for bay scallops.) Exvessel prices of sesilops of 11 spectes in North Caralina tend to be lower than the national average. These price differences are probably due to differences in processing cozts and transportation costa rather then differences in consmer preference. Most scallops are frozen and stored for trantportation to inland markets or for later donsmption. This creates an
inventory demand in eddition to consumption demand. Firtbermore, local demand for fresh scallops may also be en important factor.

Thus, the demand for bay scallops is a complex interplay of both consumption and inventory denand, supply of all three acallop species, and local (seasona1) demand for the fresh product. It is beyond the scope of this study to model this demand systen fully. Instead. a tingle-equation model for North Carolina ex-vessel price wis developed and estimated. (The equation can alternatively be viewed as arduced-forn equation with no supply shifters.) Becarse sea scallops dominate the sallopmarket, the price of bay scallops wonld be expected to be determined to large degree by factors that are important in the sea scallop mathet.

The demand equation is postulated as follows:

$$
\operatorname{NCQ}_{t}=\mathrm{f}\left(\mathrm{INCONE}_{t}, \operatorname{NCP}_{t}, \operatorname{SEAP}_{t}, \operatorname{SEAP}_{t+1}^{e}, \text { INVENT }_{t}, \operatorname{PSBRIMP}_{t}, \text { CALO }_{t}, \text { TIME }\right),
$$

where $\mathrm{NCQ}_{t}$ is the demand quantity of North Carolina bay scallops in pounds of meats (unprocessed), $\mathrm{NCP}_{\mathrm{t}}$ is the ex-vessel price of North Carolinabay scallops in dollars per pound of meats, SRAP $f_{\text {is }}$ is the current period ex-vestel price of sea scallops, SEAP ${ }_{t+1}$ is the expected future ex-vessel price of sea scallops. INVENT is the inventory of frozen stocks of scallops at the beginning of the period $t$, PSHRIMP $t_{t}$ is the ex-vessel price of shripp. CALQ ${ }_{t}$ is the landings of calico scallops, and TIME represents a groop of variables that acconnt for temporal shifts in demand during the haryest season, SEAP ${ }_{t}$ and PSHRIMP t represent prices of sabstitutes, ind together with INCOME and $N_{C P}$ comprise the standard variables expected in a demand equation. TIME is inciluded to capture seasonal changes in deand, thich can be important for products that are available on a strictiy seasonal basis. For erample, local demand for fresh scallops eaty be high when the season first opens, bpt bay taper off later in the season. TIME would also captare seasonal changes in demand that resilt from increasing size of the meat as the season progresses, assoming that the consumers exhibit a size preference. SEAP ${ }_{t+1}$ and INVENT $t$ represont the inventory denand response in the sea scallop market. The denand for inventories depends. among other factors, on the expected future prices and the current level of inventory. For example, higher expected price for next period mitht lead to incteased baying in the current period and resulting increase in the inventory tock. The CALQ viriable is included as a denand shifter becatse bigh calico seallop inndings have sonetimes been observed to depress tho North Caroitin bay scallop batket when the harvests coincided (Denis Spitsbergen, Division of Marinefisheries. personal comptication). Calico scallops tere landed fron North Carolina beds in 1978 and 1981 , and trucked from Fiorida for processing in North Carolina in 1981 and 1982 when the Florida processing sector could not hande the volune of scallops harvested.

Prior to estimation, this equation was formelated as a linear equation and transformed to an inerse demand equation by solving for NCP. To be consistent with the time unit used in other aspects of the scallop harvesting model. TIME was defined in terms of weeks tarting from Decenber 1:

$$
\text { TIME }=\gamma_{2} \text { WERY }+\gamma_{2} \text { WEEE }^{2}+\gamma_{1} \text { WEEE }{ }^{3}
$$

The PSHRIXP variable was re-defined as a shrimp price inder (published by the U.S. Department of Conmerce in "Curient Fisheries Statistics"). The inder is a Lappeyret-type price index with 1967 as the base year. All prices and incone were adjutted for inflation prior to the estingtion by dividing by the consumer price inder; thus, all prices arein units of 1967 dollars. The final modification was a replecenent of SEAP $t_{t+1}^{e}$ by a $\mathbf{3}$-period distributed lag model, where

$$
\operatorname{SEAP}_{t+1}^{e} \tilde{=} \beta_{2} \operatorname{SEAP}_{t}+\beta_{2} \operatorname{SEAP}_{t-1}+\beta_{1} \operatorname{SEAP}_{t-2}
$$

The fetultint price equation is at follows:

Monthly duta on prices. quentities and incose were ufed to fit this model. The data and theif tontces are presented in Kelloge (1985), Appendix A. The models wero ostinnted using data from 1974-1975 through 1982-1983, Ogly deta for the potential harvest season-December through March--were used in fitting the model. Since the price equation requires time in units of weeks. the widpoint of each month, measured in weeks. was used (that is, WEEE $=2.2,6.6,10.9$ and 15.0 for Decomber, Jannary, Febrany and March, respectively).

The results of fitting the price equation are thom in Table 2. The $\mathbf{R}^{2}$ was 0.708 . The three TIME variables-TEEF, WEEK ${ }^{2}$, and WEEE ${ }^{3}$--ware tested as a gronp for significance and vere found to be statisticaliy signtficant
 tested together and also fond to be significant ( $F_{1,2}=7.583$ ). The significent cofficient for ChLQ reinforces the Division of Marine Fisheries's perception that the erratic catches of calico scallops influenced the price of bey scallops in North Cerolins. (It should be moted that if the calico scallop hartest becones more resulit. the importance of calo in the price equation ronld diainish, mecestitating re-estimation of the equation.) The variables $\mathrm{NCO}_{t}$, $\mathrm{PSHPIMP}_{t}$ and INVENT ${ }_{t}$ had non-significant tratios and remined non-significant then tested jointly, ( $F_{3}, y_{i}=0.308$ ). The lack of importance of the North Carolina harvest ( $\mathrm{NCO}_{\mathrm{t}}$ ) in deteraining the ex-vessel price in North Carolinais not surprising in viet of the sall proportion of the total scallop supply represented by the North Carolina harvest. This result suggests that mangenent actions and regulations, while they may affect incone and yields, will not affect the price of bay scallops.

In epplicetions, each of the independent variables will need tobe forecasted in order to ase the above equation to predict future prices. It is therefore important that only the most rolevant variables be included.

Table 2. Statistical results from estimating the full model for ex-vessel price of North Carolina bay sallops.

MODEL:

$$
\begin{aligned}
& \mathrm{NCP}_{t}=\mathrm{a}_{4}+\mathrm{a}_{1} \mathrm{INCONE}_{t}+\mathrm{a}_{2} \mathrm{NCO}_{\mathrm{t}}+\mathrm{a}_{\boldsymbol{y}} \mathrm{SEAP}_{\mathrm{t}}+\mathrm{a}_{4} \mathrm{SEAP}_{\mathrm{t}-1}+\mathrm{a}_{4} \mathrm{SEAP}_{\mathrm{t}-2}
\end{aligned}
$$

## SOHPCE DF <br> SRI OF SODARES <br> GEAN SQOARE <br> F-VALUE

MODEL
ERROR
CORRECTED TOTAL
$\mathbf{R}^{2}=0.70758$
3.54716445
0.32246950
5.06
1.46592456
5.01308901
0.06373585
(PR $>$ F $=0.0005$ )

ROOT MSE $=0.25245960$

## PARAMETER ESTIMAE

-3.62847863
0.00379481
$1.1354418 \mathrm{E}-06$
-1.97299849
0.68808097
1.77670043
$-0.05640425$
$-5.7657525 \mathrm{E}-07$ 0.34991078
$-0.03577499$
0.00098686
$2.7650218 \mathrm{E}-08$

T FOR HO: PARAMETER=0

| -2.21 | 0.0375 |
| ---: | ---: |
| 1.41 | 0.1720 |
| 0.61 | 0.5454 |
| -3.14 | 0.0046 |
| 1.15 | 0.2632 |
| 2.90 | 0.0082 |
| -0.32 | 0.7523 |
| -3.42 | 0.0024 |
| 1.75 | 0.0934 |
| -1.32 | 0.2006 |
| 0.95 | 0.3536 |
| 0.47 | 0.6426 | STD ERROR OF ESTIMATE

## PR 2 ITI

1.64382944
0.00269188
0.00000185
0.62789450
0.59989948
0.61348777
0.17662204
0.00000017
0.19991462
0.02714856
0.00104226
0.00104226
0.00000006

The tuatiet price prediction equation used in subsequent inalyses was
 INVENT $t_{\text {-from the model. Parameter estimate for this reduced model are }}$ presented in Table 3.

In practice, the equation in Table 3 will be used to predict prices for the potential harvest season (Deconber-lifech). It till thus be necessary to forecast values for tos scallop price, calico somlop landinss and fincome. It is also important that the combination of these variables be near or within the anaple space osed to eatimate the parameters of the equation. It is possible to tuse ressonable values for etch of the erogenons variables and get poor price predictions simply bocanse the conbination of variables whs not represented in the original dateset. Statistics for each of the erogenons variablet nsed in the estination is given below as a gide:

| Variable | $\underline{\mathbf{N}}$ | MEAN | $\begin{array}{r} \text { STANDARD } \\ \text { DEVIATION } \end{array}$ | $\begin{aligned} & \text { MINIMTMM } \\ & \text { YALUE } \end{aligned}$ | MAXIMTM VALDE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INCOME | 36 | 856.5 | 46.740 | 763.0 | 910.0 |
| SEAP $_{t}$ | 36 | 1.44 | 0.332 | 0.932 | 2.088 |
| SEAP ${ }_{\text {t-1 }}$ | 36 | 1.44 | 0.329 | 0.966 | 2.088 |
| SEAP ${ }_{\text {t-2 }}$ | 36 | 1.44 | 0.318 | 0.966 | 2.088 |
| CALO ${ }_{\text {t }}$ | 36 | 347902 | 363016 | 0 | 1253255 |

For the present study, tho season averages of these variableafor two harvest semsons (1980-1981 and 1981-1982) vere used:

| Variables | 1280-81 | 1981-82 |
| :---: | :---: | :---: |
| INCOME | 882 | 887 |
| $\operatorname{SEAP}_{t}=\mathrm{SEAP}_{t-1}=\operatorname{SEAP}_{\mathbf{t - 2}}$ | 2.00 | 1.31 |
| $\mathrm{CALO}_{t}$ | 531,369 | 1,084,457 |

The $1980-1981$ set of values prodaced a relatively high price path, whereas the 1981-1982 set produced alatively low price path.

### 3.3.2 Scallop Sixe Equation

The scallop size equation, g(x, t), was developed previousiy by Kellogs and Spitabergen (1983). The growth rite of the scallop meat mas modelled as a function of mont sire and the growth rate of the shell, which vere in turn determined by water temperatere. The basic model was arody-Bertalanfy growth equation with temperature dependent growth coefficient, as follow:

Table 3. Statistical resulta from estimating the reduced model for ex-vessel price of North Carolins buy scallops. This price equation wes used in the scallop harvesting problen.

MOMEL:

$$
\begin{aligned}
& \operatorname{NCP}_{t}=a_{0}+a_{1} \text { INCONE }_{t}+a_{y} \operatorname{SEAP}_{t}+a_{4} \operatorname{SEAP}_{t-1}+a_{s} \operatorname{SEAP}_{t-2}
\end{aligned}
$$

| SOURCE | DF | SUM OF SOUARES | CEAN SQOARE | F-VALUE |
| :---: | :---: | :---: | :---: | :---: |
| MODEL | 8 | 3.48834848 | 0.43604356 | 7.44 |
| ERRROR | 26 | 1.52474053 | 0.05864387 |  |
| CORRECTED TOTAL | 34 | 5.01308901 |  | $(\mathrm{PR}>\mathrm{F}=0.0001)$ |

$\mathrm{R}^{2}=0.695848$
ROOT MSE $=0.24216496$

| VARIABLE | Paralieter ESTIMATE | T FOR 日0: PARAMETER=0 | $\underline{\text { PR }}>$ ITI | STD ERROR OF ESTIMATE |
| :---: | :---: | :---: | :---: | :---: |
| INTERCEPT | -4.24904127 | -4.50 | 0.0001 | 0.94400997 |
| INCOME | 0.00473008 | 3.96 | 0.0005 | 0.00119327 |
| $\mathrm{SEAP}_{\mathbf{t}}$ | -1.85448147 | -3.38 | 0.0023 | 0.54878495 |
| SEAP ${ }_{\text {t }}$ | 0.56224238 | 1.02 | 0.3167 | 0.55072151 |
| SEAP ${ }_{\text {t-2 }}$ | 1.69072116 | 2.96 | 0.0065 | 0.57155936 |
| $\mathrm{CHLO}_{\mathrm{t}}$ | -5.4761407E-07 | -4.15 | 0.0003 | 0.00000013 |
| meex | 0.38661194 | 2.19 | 0.0378 | 0.17668992 |
| WEEF ${ }^{2}$ | -0.04133764 | -1.74 | 0.0944 | 0.02380936 |
| MEEX ${ }^{3}$ | 0.00119521 | 1.31 | 0.2003 | 0.00090949 |

$$
\begin{aligned}
& M_{t}=M_{\max }\left(1-e^{-B(C, t)}\right)+M_{0} e^{-B(C, t)} \text {, } \\
& \text { where } \\
& B(C, t)=b_{1} t+b_{2} C+b_{1} c^{2} / t, \\
& M_{t}=\text { meat size ingrans at tine } t \text {. } \\
& H_{m a x}=\text { maximun } n t a i n a b l e \text { meat size, } \\
& M_{0}=\text { initial meat size at t=0 (November 1). } \\
& t=\text { tine in weeks fron November 1, and } \\
& C=\text { cumulative water tenperature in degrees centigrade } \\
& \text { (degree-reels) from November } 1 \text { to time } t \text {. }
\end{aligned}
$$

(The scallop size equation developed by Eelioge and Spitsberten (1983) has a different starting time than the harvesting model, necesititing a modification of the size equation, which is discussed later.)

The model mas refined further by substitutint an expresston for the masimom size that the ment con attain, Man:

$$
m_{\text {mat }}=m_{1} S_{t} m_{2},
$$

where $S_{t}$ is the length of the shel1. This is the sane general relationship used comionly in fisheries to relate weight to length. Shell size was then also modelled as function of candative temperature in the sate manner as the meat model. The thell growth model is

$$
\begin{aligned}
& S_{t}=S_{\max }\left(1-e^{-B_{S}(C, t)}\right)+S_{0} e^{-B_{S}(C, t)} \\
& \text { where } \\
& B_{S}(c, t)=c_{1} t+c_{2} C+c_{y} c^{2} / t . \\
& S_{t} \times \text { shell length in centineters at } t \text { tae } t \text {, } \\
& S_{\text {max }}=\text { uarinum attinable sheli size, and } \\
& S_{4}=\text { inftial shell length at tu0 (a variable). }
\end{aligned}
$$

The growth function, $B_{S}(C, t)$, is the amo form as that used in the meat mode 1 except that the parameters have different values.

Dsing the above models, scallop meat size can be predicted for any week in the potentisi harvest season. The shell sime equation is nsed to predict $S_{t}$, and then thet value is substituted into the met size equation. Information neded to estimate the size equation includes an initial mensure (or estinate) of sheil size on mout Novefber 1 and projections of cumplative witer tempratore. In applichtion, the initial vilue for shell sire can be estinated by sanpling. and an expected witer temperature curve corld be constracted on the bisis of regional long-term wither predictions and temperatures prevalent prion to the season.

Kelloge and Spitabergen (1983) estinated coefficients for these two models. Paraneter estinates for the meat and sheli size models are as follows (Eellogg and Spitsbergen 1983: Tables 5 and 6):

$$
\begin{aligned}
& \mathbf{m}_{1}=2.522 \\
& b_{1}=-0.4415 \\
& b_{2}=0.0969 \\
& b_{1}=-0.0034 \\
& m_{1}=0.0270 \\
& m_{2}=3
\end{aligned}
$$

 average shell size for the month of Noveuber (Kellogg and Spitsbergen 1983: Table 3).

The renaining information needed to calculate meat size is cumulative vater temperature. Jing a seven-year database, Rellogg and Spitsbergen (1983) estimated water temperature (degroes Centigrade) for the Beanfort Chanci as quadratic in time over the potential harvest season. An oquation for comalative mater temperature (in degree-weeks) wat subsequently obtained by integrating the original equation with respect to tine. The resulting equation for "normal" cumative zater temperature is:

$$
\mathbf{c}=20.203 t-1.012 t^{2}+0.027 t^{3}
$$

where $C$ is cundative temperature in degree-veeks fron Novenber 1 and $t$ is time in weeks from November 1. (The original equation estinated by Yellogs and Spitsbergen (1983) included damy variables for warn and cold winters. These vere set equal to zero here to produce the equation for "normal" winter. Whereas the temperatore regine during onusualiy cold or warm winters can influence the optinal season opening/closing schedule, only the werage, or normal, temperatere regine will be considered in this stady.)

There are two unit changes that are necessary before the scailop size equation can be compatable with the seasonim harvesting model. First, weat size is predicted in grams, whereas the harvesting model requires meat size in pounds. Thus, the meat ize equation was multiplied by 0.002205 to convert grans to pounds. Second, the time onit for the meat sixe equation is weeks sturting from Novenber 1 , whereas the seasonal harvesting model requires time in weeks from December 1. This was reconciled by replacing $t$ Vith $t+4.3$ ( 4.3 is the number of weeks in November) for every $t$ in the size equation. Consequentiy $t=0$ would correspond to December 1 and $t=17.3$ to March 31, as required. The retulting size equation is shown in Figure 1. The price-per-scallop function, obtained by matiplying the size equation (pounds per scallop) by the ex-vessel price equation (price per ponnd) is shownin Figure 2.


Time in week fron Decenber 1



Time in meeks from December 1
Figure 2. Ex-vessel price per seallop, $P($ m,t $)$ ( $x, t$ ), for North Carolina bay scallops in 1967 dolimis. Theprice equation using 1980-81 values for exogenons variables is indicated by "* " ${ }^{* \prime}$ and the equation using 1981g2 vilues is indicated by "高涪".

### 3.3.3 Fishing Mortality Equation

The catch per unit effort production function is based on the assumption tris catch is directiy proportional to population size, and that the proportion is constant over time:

$$
h(t)=E(t) q(t) .
$$

The proportion, $E\{t)$, is called fixhing mortality. It is effected by the nomber of potential scallop fishermen, their harvesting effectiveness, and the linits to effort that are iaposed by regulation, such as enteh limits and 1 initing the number of days per week when scalloping is allowed. Fishing mortality is composed of two parts; 1) atandard measure of fishing effort (E), and 2) the catchability coefficient (q). The catchability cotfficient is defined as the fraction of fish tock that is onght by a stindard unit of fishing fffort (Ricker 1975: p.2). A difficult aspect of any fishery rasagevent problem is the definition--and subsequent mestrement-uf a stindard $u$ it of effort. Theoreticaly, any nitiof effort can be uefd as iong as the associated catchability coofficient is known, or can be measured,
 expressed in terms of the standard unit. Alnost no information is available for either E or q for this fishery. Consequentig, only ad hocestimates of these variables are possible. Optinal solutions will be calctated for a tange of reasonable valnes for E(t) .

It is desirable to define standerd nit of fishing effort to correspond as closely as possible to the typled, or average, unit of fishing effort that would be observed in the fishery. For this problem, atandard ; effort is one buat-diay, defined tober 20 -foot boat with a maximum holding capacity of 50 bushela pulling 2 drags and fishing for full day or antil capacity is reached. Each tandard boat-day is assuned to be manned by the owner ind one crew aember. This ia the nost comion effort level reported for the fishery (Fricke 1981). Abont capacity limit of 50 bushels is a realistic feature of the bay acillop fishery becatose of the sumll size of the boat: needed to manger in the shallow vater environiment where bay scallops are fond. It will ilso be ssamed that if the boat c acity is reached, fishing vill stop for that day. (Onder present fogulations, returning to the fishing grounds fter unloading the catch is illegal becarse of the daily catch linita.) Individual fishermen may adopt a number of fishing arrangement: other than the tandard one defined here, but these arrangenents would be converted to standard units of fishing effort when applying the model.

Theoretically, the number of fisheraen entaged in seallop fisking at any specific moment during the harvest season depends on expected profit (and thas expected catch, price, and fishing costs) and profitibility of alternativefisheries or employent opportunites. Consequently. fisbing effort should be modelled an endogenous viriable. However, quatitative data on fishing effort are not avaliable for this fishery, precluding this approach. Instead, fishing effort will be taten as agstant throughout the season and will ropresent an "averager' level of fishing effort. Evidepce collected by the DNF doring enforcement activities indicated that the number of boats observed fishing for scallops tapers off sharply as the teason pro-
gresses. This is reasonable since profitability depends on the abondance of scallops, which decreases as harvesting proceeds, Since information defining the seasonal tivilability of fishing effort is not avilable, an ad hoc estimate of the seasonal average was made.

Nov that a standard unit of fishing effort has been defined for the bay scallop fishery, an empirical estinate of it is needed. Fricke (1981) reported that there were approxinately 600 scallop fishermen in Notth Carolina, 75 percent of whon were full-time fishermen (engaged in comercial fisheries 111 fear) and 25 percent of whon were part-time fishermen (someone who bad regular oploysent ontside the consercial fishing tudustry.) This estimate tas based on finformation gathered fromey informants in eight commaities along the coast where most callop fishermen refide. Fricke (1981) 1 so reported that a part-time fisherman was abont half as active in the fishery as a fuli-time fisherman. Therafore, the total number of fishermen was adjusted downard to 525 , where emch is assoned to be operating as a fuld-timefisherman. Assuping two fuilitime fishermet per boat, the number of stendard units of fishing effort (as defined here) is estimated to be 262. The averase number of standard units of fishing effort expected to be active on any given day was assumed to be 180 ( 69 percent of themaimum level of 262). Assuming a setson average of three good fishing days per week (and assuming that the season remins closed on weekends), the weelly effort level was set equal to 540 bont-daya ( $180 \times 3$ ) for the entire North Carolina bay scallop fishery. (Hote that the use of three fishing days per week here hes nothing to do with regulations liniting the nomber of fishing days per weet. It is noed simply in recognition that factors soph mpoor wetber will preciade fishing five days per week by all 180 standard nits of effort. Note 0150 that the 180 standard onits of effort per day will not correspond to empirical connts of fishing boats since the fishing boats wil not all be "standard nnits".)

This ad hoc estiante of fishing effort is generally consistent with the recent historical record of fishing mortality. It is restonable to expect, however, that the offort level wonld be higher if the fishery were managed to marieize returns to the harvesting sector. Under optimal management, the returas fromscallop fishing may increase and attract siarger number of fishermen. It is thus desimable to calcalate the optinal season opening/elosing sohedule nsing a larger number of boat-days per week. Optimal opening/closing schedules were deterninod assaming 750 boat-days per wetk in addition to solntions tssaming 540 boat-days per weet.

With effort (E) in onits of boat-days, the eatchability coeffetent (q) is the fraction of the scallop popalation that is barvested by one boat-day. Since it is defined here to be constant, it represents minerage value over the entire harvest period and over ali vesala. In motaility, the entchability coefficient varies from vessel to vessel and even from day to day for the same vessel. For example, as the season progresses scallops are restricted to areas dificult to fish and for which there is bigher q. There is no information avilible that would identify the value for $q$. However, possible values can be calculated that are consistent ith catch data from previous years and with tho hoc estimate of the average namber of standerdanits of fishing effort. Ding the catch-per-unit-effort production furction (Eq-h/x), rough estimates of Eq were obtained for the first
week in Janary for eight harvest seasons, (December was not nsed because of the possibility that quetes had substantialiy constrained fishing mortality and because the namber of fishing days in Decesber varied from yent to year.) The average veckiy harvest was calculated for Janary by dividing the Jamary catch by 4.4, the number of weeks in Jantary. The populationsizefor the first week in Jannary was calculated by subtracting the December cateh from the popniation estimate (see Subsection 3.3 .5 for mothods of estinsting total population sixe). Eatinates of Eq were then obtained by dividing the welly average Janamy catch by the population estimate for January 1. Assuman 180 standard bont-days per day of offort and 2 fithing days per week (recall that regulations have ifinited the nomber of illawed fishing days to this pumber early in the season), minestinate of q for each of the harvest seatons was calculated by dividing the Eq estimate by 360. Restuling estiates of Eq and q are shown below:

|  | Eq | $\square$ |
| :---: | :---: | :---: |
| 1974-75 | 0.088 | 0.00025 |
| 1975-76 | 0.053 | 0.00015 |
| 1976-77 | 0.057 | 0.00016 |
| 1977-78 | 0.108 | 0.00030 |
| 1979-80 | 0.071 | 0.00020 |
| 1980-81 | 0.098 | 0.00027 |
| 1981-82 | 0.102 | 0.00028 |
| 1982-83 | 0.051 | 0.00014 |

On the basis of these calculations, it apposirt that fishing mortality bas ranged from about 5 to 10 percont per week. For the atandard unit of effort defined here, this is equivalent to $q$ valuet ranging from aboat 0.0001 to 0.0003. Three q vilaes vere peed in thit tudy to calculate optian harvesting solntions: $0.0001,0.0002$, and 0.0003 . These q valnes correspond to fisting mortalities ranging from 5 to 16 percont per week for E-540 boatdays per week and 7 to 22 percont por weet for $E=750$. In the absence of more specific information, it is belteved that these Eq values bracket expected fishing nortsifty for this fishery.

Theoretically. the boat capacity (asanmed here to be 50 buthels, or 21,750 seallopa) could constrain the estch. The hervest model mas altered to incorporate this feature by adjusting when constrained as follows:

$$
\text { if } q(t)<\frac{\text { bont oapacity }}{\text { population aize }} \text { then set } q=\frac{\text { bont capacity }}{\text { poptilition tire }} \text {. }
$$

However, for the range of qulues and population estimates used in this analysis, the boat oapacity wes not copstraint. (A catch quota can be incorporated into the model in the same maner by raplacing the boat capacity with the catch 1 init. Guotas ware not modelided in this stady since they are inherently inconsistent rith econonic effieiency.)

Fishing costs can be categorized into three groups: 1) fined costs, such as investment cost of the boat, gear and one-time seasonal mintenance costs. 2) daily fuel costs, and 3) daily opportunity costs of thefisherman. The last two groups represent variable costs, which can be modelled as being proportional to fishing effort. Becanse fixed costs ere constant regardiess of the level or timing of fishing effort, they do not affect the optimal timing of the harvest. Consequently, fixed costs will be ignored in this analysis. An estimite of fired costs wis provided by Fricke (1981: p.23): 'This ts samil boat fishery and the tavestnent of a typical fitherman in boat, gear and operating costs, excluding fuel, is on the order of 500 to 800 dollars per tallop season'. Exclusion of these fired costs will inflate the present value calculation, but the magitude will be very small relative to the total.

The cost function was therefore modelled as cost-per-ninit-effort function,

$$
\text { total cost per weok f } \mathrm{cB} \text {. }
$$

where $E$ is the number of bont-days per week and $c$ is a constant cost coefficient. The cost coofficient represents the average variable cost per standard unit of effort, or the average cost per boat day. (Actoal costof for an individual fishermon may depart abstantially from this average value.)

Whereas the cost coefficient is modelled hereas a constant. there is goodreason to suspect that both dailyful costs and opportanity cost of the average fisherman vary over the harvest season. Seasonal mnemployment trends (Fricke 1981) suggest that opportonity costs are lovest in January and February when unemployment in the region peaks. In March, alterativa
 and constraction) incresse. Daily fuel costanight also incrosse the the season progretses. Increases in daily fuel costs would occur as fithormen deplete the resource near thoir home port and are required to travel farther each weok to fish. Also, honrs spent towing per day (and thut daily fiel costs) may increase as the reaource is depleted and the stock density decreases. This reasoning suggests that daily fuel costs may be fanction of stock size rather than effort. However, the relationship between ftock density and fuel costs is not knom, and so datiy finel coste were modelled on a per-effort basis.

The opportpity cost of scallop fishermen and the daily operating costs were estimated indirectig. Individuals employed in the procesting sector were reported to make about 40 dollart per day (assuming eight bours per day) hand-shucking scallops in Janary, 1982 (Nows and Obseryer, galeigh, N. C., Sunday. Januery 31, 1982). This wage was taken as an osigate of the opportanity cost of a scallop fishernan. It would be expected that the fishernan would revain in port and shack scallops if his incone frop fishing wat less than 40 dollars per day. Fricie (1981) cites ono fredientiy pentioned division of income from day's catch ts giving one-third of the gross to the bont to cover operating expenses (including fuel cobts) and
depreciation, one-third to the owner-captain (operator), and one-third to the crew member. If tho opportmity cost of afisherman is 40 dollars per day. the total binimas daily opportunity cost for the two fisheraen would be 80 dollars and daily operating expenses monid be 40 dollars using this payment scheme. (Fricke (1981) also reported that daily fuel consumption ranged from 10 to 20 gallons, which is equivalent to abot 15 to 30 dollart per day assuming 1.50 dollert per sallon. Thas, the 40 dollar per dey operating
 considered.) Consequently, the total dally cost per standard unit of effort is estianted to be 120 doliart, which is equivalent to 42.55 dollari after conver*ion to 1967 dollart (determined by dividing the nominal anount by the consumer price index for Janury, 1981).

As discossed in Chapter 2, opportonity costs of fishermen are difficult to quantify. Depending on relative prices, fishing for oyters or cians night be a better employment iternative than shacking seallops. Alternatively, some fishermen may face the choice of scallop fishing or no employment at all. In this case, their opportunity cost wonld be uch lower than that estimated here. The opportunity costa of tallop fishermen can therefore vary markediy frop season to setion and from individual to individual. Since this catt estimato affecta the optinal season opening/closing schedule, e second (lower) eftinate of the cost coefficient was also celcalated. Asambiag en opportanity cost of 3.50 dollars per hour
 dollars per day operiting cost, an alternative cost per standard onit of effort is 34.04 dollars per day in 1967 dollart. The harvesting problem was solved for both of these cost estimetes.

### 3.3.5 Equation of Motion

Because of fortpitons biologicsl characteristics of the North Carolina bey scallop. the change in popalation number-the equation of motion-can be modelled as equal to the harpest rite, as follows:

$$
\begin{aligned}
& \dot{x}=-\operatorname{Rqx}(t) \Phi(t) r \\
& x(0)=z_{0} .
\end{aligned}
$$

Two features of bay scallop bioloty that pormit this siaplification are: 1) there is no recruitment during the potential harvest senson and 2) natural mortality is baliteved to be very low during the potential harvest season, and is escmed to be zera for purposef of this stady.

Whereat natural mortality of bay scallops is high during the spring and anmer, Division of Marine Fisheriasbiologists believe that the nataral mortality rate is 10 during the winter months then harvesting occurs. Lov natural mortality during this time results becanse many of the importint predator of bay seallops favor warmer temperateres and bay sedlops thrive at the cooler wintar temperatures. The matural mortality rate i* not almays near-zero, homever. Mass mortalities can occur as a result of ortremely cold
temperatures and low salinfties, But in the absence of estinates of the natural mortality rate, the atmmption of zero natural mortality during the potential hirvest season is reasonable. (Shoold subsequent studies reveal tagificant natural mortality during the harvest season, the problen ean be expanded to incorporate metural mortality using an approach similar to that usted by Eellogg (1985) for New River shrimp.)

Since there is no recruitment during the barvest season, the recruitment function, $F(z, t)$, collapses to aingle initial value for popplition size, $x_{0}$. In practice. $x_{0}$ oan be estimated prior to the harvest season by sampling. For the present analysis, five values of $x$, that span the range of probable walues were selected. The total catch in numbers for mine harvest seasons was approximated by converting monthly catch in ponnds to cateh in numbers and summing over the monthiy values. (See Iellogi (1985) for resnlts.) These season catch totals were then adjusted to probable values for initial population aize by dividing the catch total by an estiante of the proportion of the scallop population harvested. This proportion is not known exactly, and probably varios from year to year. However, becanse of the intensity at which scallopint occurs by some of the local fishermen, it is likely that most of the seallops are harvested each season (Denais Spitsbergen, Division of Mafine Fisheries, personal cominication). Thefefore, value of 0.75 vas used to calculate population ostimates. Resulting estimates ranged from 13 to 33 milition scaliops (Eellogg 1985). Valnes of $x_{\text {, }}$ selected for $u$ fo in the present stody wefe $13,18,23,28$ and 33 million scallops.

### 3.4 Calenlation of the Optimel Harvesting Pertod

### 3.4.1 Statement of the Problem

Incorporating the resalt of Section 3.3 into the harvesting model in Section 3.2, the problem can be restated as follows:


$$
+q_{7} \mathrm{CALO}_{t}+\mathrm{a}_{8} \mathrm{t}+\mathrm{a}, \mathrm{t}^{2}+\mathrm{a}_{10} \mathrm{t}^{3}
$$

$$
g(x, t)=0.002205\left[M_{\max }\left(1-e^{-B(C, t)}\right)+M_{0} e^{-B(C, t)}\right],
$$

$$
B(C, t)=b_{1}(t+4.3)+b_{2} C+b_{1} c^{2} /(t+4.3)
$$

$$
\begin{aligned}
& \text { © (t) } \\
& \text { such that } \\
& \dot{\dot{x}}=-\operatorname{Eqx}(t) \boldsymbol{t}(t) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& H_{\text {mix }}=m_{n_{1}} S_{t}{ }^{3}, \\
& S_{t}=S_{\max }\left(1-e^{-\left(c_{1}(t+4.3)+c_{2} C\right)}\right)+S_{0} e^{-\left(c_{2}(t+4.3)+c_{i} C\right)} \\
& c=20.203(t+4.3)=1.012(t+4.3)^{2}+0.027(t+4.3)^{3} \text {. } \\
& t=\text { time in weoks starting froa Decomber 1, and } \\
& \phi(t)=\text { the decision variable ( } \Phi(t)=0 \text { implies a closed sasson and } \\
& \text { (t)=1 implies an open stason). }
\end{aligned}
$$

Coefficionts vere estimated in Section 3.3 follow:

$$
\begin{array}{ll}
a_{0}=-4.24904127 & u_{0}=2.522 \\
a_{1}=0.00473008 & b_{1}=-0.4415 \\
u_{1}=-1.85448147 & b_{3}=0.0969 \\
u_{4}=0.56224238 & b_{3}=-0.0034 \\
a_{3}=1.69072116 & m_{1}=0.0270 \\
a_{1}=-0.0000005476 & S_{m_{1}}=6.378 \\
a_{1}=0.38661194 & c_{1}=-0.0298 \\
a_{9}=-0.04133764 & c_{2}=0.0065 \\
a_{14}=0.00119521 &
\end{array}
$$

Exogenong varlables were astigned the following valnes:

$$
\begin{aligned}
\mathrm{E} & =540 \text { or } 750 \text { standard boat-days per weth, } \\
\mathrm{q} & =.0001, .0002 \text { or } .0003, \\
c & =42.55 \text { or } 34,04(1967 \text { do11ars), } \\
\delta & =0.001827, \\
S_{0} & =5,9 \text { contimeters, } \\
\mathrm{I}_{0} & =13,18,23,28, \text { or } 33 \text { ailition seallops, }
\end{aligned}
$$

and the two sets of valuas for the throe erofenons denand variables are shown belov.

| Fatiabls | High price $(1980-81)$ | $\begin{aligned} & \text { Low price } \\ & (1981-82) \end{aligned}$ |
| :---: | :---: | :---: |
| JNCOME | 882 | 887 |
| SEAP ${ }_{\text {c }} \mathrm{SEAP}_{\text {t-1 }}=$ SEAP $_{\text {t-2 }}$ | 2.00 | 1.31 |
| $\mathrm{CALO}_{t}^{t}{ }_{\text {t-1 }}$ | 531,369 | 1,084,457 |

In sumary, there Era two price estinates, two cost estimates, five popilation size estimates, three $q$ estimates and two effort levels. Effort is held constant throughont the setson, the scallop giowth tite issumes a "normal" temperiture regine and astames growh is the same for alimeas. No quotas ara imposed, and fishing is allowed Monday throngh Friday. Solving the burvesting problem for each of the possible combinations restita in 120 sepmitite solutions. The range of valuet for each variable wis felected with the purpose of bracketing valoet most likely to occur. Consequentiy. the 120 optimal *olutions provide general guidelines for when to open the scallop seaton whon no prior inforintion on my of the erogenovis variables is avatlable.

### 3.4.2 Solution Procedure

As discussed in Chapter 2, the maximumprinciple is msed to solve for the optipal openfig/closing schedule, f(t). The Fanilotoning for this problew is

$$
H(t)=\left\{[P(t, \sigma) g(x, t) E q x(t)-c E] e^{-\delta t}-\lambda(t) E q x(t)\right) t(t)
$$

Which leads to the following switching function:

The systen of differential equations is as follows:

$$
\begin{aligned}
& \Phi=0 \quad \Rightarrow \quad \dot{x}=0 \text { and } \quad \lambda=0 \text {, } \\
& \phi=1 \Rightarrow \quad \Rightarrow \quad \dot{x}=-\operatorname{EqI}(t), \quad x_{0} \text { given, } \\
& \dot{\lambda}=\lambda(t) E q-P(t, \nabla) s(x, t) E q e^{-\phi t} .
\end{aligned}
$$

Sufficient conditions for solution can not be deriped because botindary conditions for the adoint equation ure not specified. (That is, only the general solotion of the adjoint equation ean be obtained; the particular sointion requires that $\lambda$ be known at some point in time.) The optimal solution is obtained by varging $\lambda(0)$ (designated as $\lambda_{0}$ ) ontil the $\boldsymbol{f}(t)$ corfesponding to the maniman net present value of the season haryest is identified.

The optimal opening/closing schedule wis determined to the nearest ref. Further precision is probably not warranted in vian of the many assumptions and approximations that were nide in specifying the problem. The algorithm used to solve for the optimel (t) is presentod in Appendin A. The progring steps throngh the potentini harvest todon week by reek. The fitching function is solved at the beginging of each week to see if the season should open or not. If the stitehing function is negative, the progrin skips to the beginning of the next week and repeats the check, If it if positive, the two differential equations are solved nsing a fonrth-order Runge-Gntta numerich! procedure (Wolfe and Roelinig 1983). The barvest and aet present value of the harvest for the week is alto calenlated within the Ronge-Intte algithm. After determining the new $m$ and $\lambda$, the progran ndiances to the beginning of the next week and ohecks to see if the senson shonld retain open,

To denonstrate the switching point vith respect to $\lambda$, it is necessary to resrrange algebraically the stitching function at follows:

$$
t=\left\{\begin{array}{lll}
1 & \text { if } & \lambda(t)<[P(t, \pi) g(x, t)-c / q x(t)] e^{-\delta t} \\
0 & \text { if } & \lambda(t) \geq[P(t, \nabla) g(z, t)-c / q x(t)] e^{-\delta t}
\end{array}\right.
$$

The term on the right-hand side of the inequality sign is the disconnted net revenue per seallop harvested. The switching function in this form indicates that the season should ramain closed an long as the pier cost per scallop. $\lambda$. is greater than the disconnted net revenue per scallop harvested. The season should open at the point there $\lambda$ equals the potential disconnted net revenue per scallop and remaln open as long as the marginal diaconnted net revenue if greater than the nargingl nser cost. (Thia ia nothing more than the familiar profit maximization rule of MR-MC.)

An example of the procedure used to obtain the optimat solntion is i ilustated graphically in Figares 3 and 4. This erample was based on the solution to one of the 120 conbinations indicited above. In this problen. $\lambda(t) i s$ monotonically decreasing function of time at long at $\lambda(0)<P(t, w) g(z, t) e^{-8 t}$. Thore is no change in $\lambda$ watil the season opent, after which $\alpha$ decreases untilit gets to zero or mitil the feafonciofef agin (Figure 3). Themarginal disconnted iet revenuecurve increases to peak betwen the serenth and eishth weeks and then decreases againasthe price per acallop decreases later in the season, $A \lambda_{0}$ equal to 0.011 is sobigh that it does not intersect the maginal disconnted potential net repence
 in a season opening in the seventh week (t=6). Hovever, the seasoncloses again after the nifth wetk with $\lambda$ sill greater than zero. Fron the necessary condition that $\lambda(T)=0$ we kow that $\lambda_{0} \mathbf{0 . 0 1 0}$ cannot be optimal. $\lambda_{0}=0.007$ is tried next. This choice results in a season opening in the fifth weti ( $t=4$ ), find $\lambda(T)=0$ t tequired.

At this point $\lambda_{0}=0.007$ is a contender for the optimal $\lambda_{0}$. It meets the necessary conditions. However, several other valaes for $\lambda_{0}$ also meet these iecessary conditions. The optimal solution is found by methodically searching for the $\lambda_{0}$ that corresponds to the maimun net present value of the season"s harvest. This iq illestrated in Figure 4 for the erampe at hand, As $\lambda_{0}$ is increased, the cumalative net present walue of the harvest increases to , haxime when $\lambda_{0}$ is between 0.008 and 0.009 . This optimul corresponds to - staston opening at the beginning of the sizth met. Since the solntion is obtained only to the nearest week, there $i s a$ mang of $\lambda_{o}$ s that are optimal,

The lowest marginnl dizcounted net revenne curve shown in figura 3 is for $\lambda(t)=0$. Thit represents the prosent aitastion in the fishery where the marinal nser cost is disregerced. In this example, the season wouldopen (that is, the fishory wonid becope profitable) at the beginning of the third week and wonld become nuprofitable by the ond of the ninth week (a seven-wek
 45.999 (1967 do11ars). The optieal season (regilated case) starts at the beginning of the sirth wetk and becomet approfitable after the eleventh week


Time in weeks after December 1
Fiqure 3. Agraphicalilingtration of the procedure for solving for the optimal harvest period (ree tert). The maginal disconnted potential net
 "'', Revenne and shadow price are in 1967 dollits.


Figne 4. The viloe of the objective function-the camulative net present valve of the harvert (in 1967 dollars)-plotted agsinst valuet for $\lambda_{0^{+}}$. In this exneple, the objective function is maximized when $\lambda_{0}$ is between 0.008 and 0.009.
(a six-weck interval), resulting in mamative net present value of 71,919 (1967 dollars). The conclusion from this extmple is that delaying the opening of the season increased the commercial value of the resource, and suggests that the potential gans from bioeconomic manaement are substantial.

Obtaining the optinal $\lambda_{0}$ also resplta in moptimal teaton cloning time. This is important in establishing the optimal present value of the harvest. However, it mold not actualiy be regalated by the regolatory agency. The optimal season closing time represent; the time when it is no longer profitable to harvest scallops onder the assumptions of the model. In practice, the fishermen will deternine when to atop fishing. The focus here is on epoping the season in fuch manger as to be consistent with profit maximitation and economic efficiency.

The same reasoning applies to the unragilated case (whete $\lambda(t)=0)$. The season determined for the unrognlatod etse repfosent the time when it is profitable to harvest acallops pades the eqgnotiona of the model. In the above example, the nareg口iated fishery did not operate until the third veek in December, even thongh fishing during the first two weeks wat possible. In the actual fishery, fishermen are observed harvesting scallopt whenever the season is open. This discrepancy betmeen the model ad "reaifit" occurs becanse of simplifying essumptions used to develop the model. For example, the model assumes that all fishermen are identical and have the same opportunity costs. Sone fishermen would be fishing when the returas were belov the opportunity costs assumed in the model. Consequently, any comparison betweon the optinal solution (regulated case) and the unregulated case must be made using the sage set of assumptions. This requirement is met by contrasting the optimal solution to the unregulated solution obtained from the model with $\lambda(t)=0$. (The distinction between the model and what may be observed in an actuel fishery is important for onderstanding how to interpret the results of the model, but does not dininish their applicability.)

Only a single season opening will result for the scallopharvesting problem onder the assumptions of the model. This is obvions from Figure 3. Even without harvesting, the marginal disconnted net revenue curve decreases after the seventh week. Growth in the value of the stock after this time is negative, indicating that delaging the season opening beyond the eighth week would never be optinal. If harvesting could be done in a singlemeek, it would take place during the seventh or eighth week. Since there are constraints on the rate at wich harvesting can take place (limited here by Eq), the optimal solution is a blocked interval balanced ronghly about the seventh week. (See Clark (1976, p. 56) for a discussion of blocked intervals in conjunction with the fifheries optimal control model)

### 3.4.3 Results

The results of the 120 colutions are mamarized in Appendix B, Table B1. Optimal season opening fanged from the fifth wetk (t=4) to the eighth week ( $\mathrm{t}=7$ ). The most important detersinant of tho season opening was population size. At loweqleveltwithallfactors oxeept popalation size constant.
solntions ranged from opening at the fifth weet (hish initial populition size) to not opening at all (lom initial popnlation size). The offects of $x_{0}$ on the season opening were list pronotaced at the higher Eq values.

Prica and cost also had ineffect on the seaton opening. For a tiven population aite and fishing mortality, the season opening was teneriliy one week earlier at the bighprice level thenit the low price level. Thotwo cost levels had a similar effect (the lower the cost, the earlier the season opening).

The predoninant effect of fishing mortality (Eq) on the senton openins Wan in determining whether it was profitable to fish or not. At lot Eq veluos (less than 0.08), it was generiliy profitable to fish on 1 y at the higher popplation levels. Over the range of Eq values from 0.118 (quo.0002 and $E=540$ ) to 0.225 ( $q=0.0003$ and $E=750$ ), the optimal season opening verited
 the input conbinationa and did not chante for the remaininfinput combinations.
 determinad for each of the 120 input combinations. Resulty aro presented in Appendix B, Table B2. Start of fishing rangad from the firtiteok (t=0) to the sevonth weet (twh). The unregnisted case is contrated with the optimal solutions for Ex540 in Tible 4. Typicaliy, the optianl solution vas to delay opening the season two to three weck past the atart of fishing in the unregnlated case. Delaying the seanon opening substantially incteased the present vaine of the harvest for all comparisons. (It it important to remember that the "pntegulated case" determined here isn't completely noregulatef. The model atill assumes that fishing if got peritited on weckends or at night, and gear restrictions on the design and weight of the dras remain in force.)

### 3.5 Drofnd Putarg Rosegrch

Frop the many ad hoe otimates and ranges of valtes ofedin the bay scallop harvesting problem, it is obvions that more refearch is needed before the poner of this model can be poted to its fullett at an id to the promigation of optinal regulation. Foremost on the "rieed list" is a catch-offort dataset. Complete meekly catch statisticsincipding i) the number of hourt tished per boat. 2) oheracteristict of tho fishini effort such as boat alize and crevinie, and 3) size and patpe of the catch can be used to estimate the original populition size mid the catchability coefficient. It cen also be noted to develop ajetionship between profitability and the sopply of fishing effort. Developent of apply equation for fishing effort is particulariy nefful in evaluating the inpact of management practices that differ from current practices. This information would reed to be collected only until rearonible q etimates have been determined end apply eqution for effort has been developed.

Tho price equation vili peed to be contingaily mpdated. The min objective of the price equation to forecest. Thas it shopld perform best
when it is fitted with the most recent data available. It woold be desirable to opdate the equation before each season. In addition, price prediction equation that was based on weklyprices mould perform mucb better in the model then the present equation, which mas based on monthly data. Teekly price data can be obtained in conjunction with the catch-effort study described above.

Another area for more stady is the estination of costs, particulariy the opportunity cost for the "everage" scallop fisherman. As seen in the list section, costs play an important role fadeterminins the optimal seaton. Fishermen with very lovopportunity costs wopld prefer to opon the season slightly earlier than those fith higher opportanity costa. They voild also fish longer in the latter part of the season. Thus, there is no season opening that is optimal for all individuals. Additionaliy, there is probably a sessonal component to fiching costs that is not included in this analysis that may affect the optinal solution, More information on opportanity costa of scallop fishermen would permit more refined analysis of the harvesting problen.

The final aren for additional research is the quantification of natural mortality during the harvest season. The solutions presented here are based on the astuaption that there is no natural mortality during the harvest season. If there are significant sonrce: of natural mortality competing ith the fishermen for the stock. then the optimal season opening wonld be earlifer than presented bere.
Table 4. Sumary of harvesting tolttions for the North Caroling canllop fishery-both regnlated

 Appondix $B$ for $a f 11$ presentation of respits.)
$q=0.0003$

| unregriatod ${ }^{\text {a }}$ | fegulated | unregulatod | regmiated |  | reguIatod |
| :---: | :---: | :---: | :---: | :---: | :---: |
| fishing present $z_{0}{ }^{b}$ poriod valuo | imal presont ation value | ithing prefent period value | igal prosent son valu* | shing present <br> riod valve | $\begin{aligned} & \text { timel present } \\ & \text { toon velte } \end{aligned}$ |


| Prices 10\% ${ }^{\circ}$, Cost=42.55 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | none | - | Hond | -- | nope | $\cdots \mathrm{Cd}$ | nomb | - | 5 | -68 | 7 | 1,573 |
| 18 | none | - | none | --- | 6 | -38 | none | -- | 3-5 | 746 | 6-8 | 17,418 |
| 23 | none | -- | none | -- | 4-6 | 4.052 | 6-8 | 10.239 | 3-7 | 23,122 | 6-9 | 42,861 |
| 26 | none | -- | none | - | 3-7 | 12.453 | 5-8 | 28,110 | 2-7 | 29,195 | 5-9 | 73,701 |
| 33 | none | - | none | $\leftarrow-$ | 3-8 | 36,233 | 3-9 | 51,870 | 2-8 | 58,883 | 5-10 | 107,737 |
| Price=10w, Coste34.04 |  |  |  |  |  |  |  |  |  |  |  |  |
| 13 | none | -- | tone | - | mone | -- | nonf | -- | 4-6 | 2,214 | 6-7 | 8,304 |
| 18 | none | --- | none | - | 4-6 | 1.983 | 6-8 | 6.829 | 3-7 | 16.115 | 6-9 | 31,967 |
| 23 | none | -- | nome | - | 3-7 | 12,669 | 6-9 | 25,276 | 2-7 | 26.911 | 5-9 | 62,970 |
| 28 | 6 | -107 | 7 | 118 | 3-8 | 37,361 | 5-9 | 49,510 | 2-8 | 57.689 | 5-10 | 98,006 |
| 33 | 4-7 | 1,643 | 6-8 | 6.084 | 2-9 | 47,036 | 5-10 | 77.237 | 2-9 | 90.917 | 5-10 | 134,934 |
| Pricembith, Costme42.55 |  |  |  |  |  |  |  |  |  |  |  |  |
| 13 | none | -- | none | --- | 4-5 | -403 | 7-8 | 3.818 | 2-5 | 4,144 | 6-8 | 29,457 |
| 18 | Hone | -- | none | --- | 2-6 | 7,025 | 6-9 | 31,065 | 1-6 | 21,990 | 5-9 | 78.080 |
| 23 | 5.7 ${ }^{\circ}$ | -614 | 7 | 932 | 2-8 | 45,999 | 5-10 | 71,919 | 1-8 | 67,819 | 5-10 | 136,033 |
| 28 | 4-8 | 10.408 | 6-9 | 13.938 | 1-9 | 66,814 | 5-11 | 119,718 | 1-9 | 121,070 | 5-11 | 199.263 |
| 33 | 3-9 | 28,925 | 5-10 | 36.439 | 1-10 | 115,532 | 5-12 | 171,734 | 0-9 | 120,886 | 5-12 | 265,578 |

Table 4. (continued)

 billions of tcallops.
CThe "high" price wes produced by solving the price equation using the 1980-1981 everage of the
 wit produced uging the 1981-1982 averiege of these viriablot.
Negative values roseltod becausi thero was a poitive net return at the beginging of the week, which was offset by losses in the iatter part of the week. Recail that the decision to harvest
The fishery wes not profitable during the second hervest week, but returned to being profitable tit the third week owing to growth in vilpe.
Note: The season to in weoks whore the first weok th the first aeven days in Decenber Nublering beging with zero. For example, an optimal season of 'fs to $12^{\prime \prime}$ denotes that the season opens at the beginning of the ixth week (delitying the opening five weeks past Decenber 1) and remains open thropgh the thirteenth weok.

### 4.1 Introduction

Application of optinal control models to fisheries management can greatiy enhance the regulator" ability to pronalgate regalations that are consistent with maximization of the social value of the fishery. However, optimal control theory-like all mathematical optinization techniques-has two difficult prerequisites:

1) amodel that captores the essential biological and economic elements of the fisbery in question, and
2) perfect knowledge of the future values of exogenous variables (such as witer temperature, prices of related goods, opportanity costs of fishermen and gear).

Models can be improved and nev models developed as feedback from the ose of the models motivates additional research and data collection. But future values of erogenons variablet will never be known with certainty.

The problem that arises from uncertainty is apparent in the bay scallop harvesting problen. Five variables were assigned more than one possible value, resulting in 120 separate solutions. Four possibilities for the optimal time to open the season resulted. Which one should the regulator choose? Sone variables-such as initial population size--might be estinated more closely by collecting additional data before making the managenent decision, but the problen of pncertainty reseins.

Another point of dificulty associated with uncertainty is risk aversion. If futare values were known. the optimal solution would be preferred by all members of society, assuming they could agree on the objective function and opportunity costs. But with uncertainty cones * choice of two or more management strategies, and with that cones the risk of being wrong. Suppose a regrlator chose only one set of expgonons variables, solved the optinum control model and promigated mangenent regulations. Some fishermen might prefer to use a smalier popalation size in the model, for example, since there would be a lower probability that the actual popalation would fall belowit. In doing so, they wond be expressing a preference for mangenent strategies corresponding to 10 wer but more certain income over those corresponding to higher but more ancertain income. In this case, the fishermet ate being risk-averse. Most individuals are risk averse when faced with uncertainty, but to parying degrees. Consequently, it is not possible to obtain a single solation that pleases everyone in an atmosphere of uncertainty.

Randon processes 1 for affect decision-mang. For example, unustily favorable conditions will canse individual scallops to grow more rapidy. Unusualy unfavorable conditions will canse less rapid grovth and may eanse
mortality. To include those effects in the model, a stochastic terth conld be added to the differential equation, as follows:

$$
\dot{x}=F(x, t, x)-M(x, t, x)-Q(x, t, y) \varphi(t)+\sigma(x) d v
$$

where v(t) is a Tetner process (Maliaris and Brock 1981). A Teinef procest is Brownian motion process that over eny finite interval has Normal, zero nean, unit variance distribution, fadependent of the distribution over any non-overlapping interval.

Pindyck (1984) has investigated the effects of this type of randonness in market for renewable resorrces. He concludes that in teneral, given a particulaf tock level, tho net effect of oncertainty on the optimal rate of barvest is indeterainite. There are effects that tend to increase the optimal haryet rate and anfect thet tends to reduce it. Even if all fanctions (ench as $F$. $M$, and $Q$ were known precisely, problems of pacertainty wight arise due to this random component.

Econonic deciaion theory ean be osed to partialiy alleviate these problent of uncertainty in mbing managenent decisions (Tinkier 1972). It requitet a complete et of alternative actions, an estinate of the bopefits that would result for ewh set of erogenons variables, and probabilities for each tet of exogenons variables. The selection of these probabitities arises from the decision maker's pteconception of the likelihood of each outcone. and thas incorporates the judgrent of the menterer into the decision miting procesf.

The porpose of this chapter is to illustrate the pse of stochastic dominance-t decision theory techuiqueformeing decisione noder uncertainty. Stochistic dominance rolet delineate a set of ections (such as Iterative season openitgs) that woild be prefericd by individuals. Aetions mot meeting this criteria an be anfely discarded by the fishery manger. Tho technique ia applied to the resolta of the bay scallop harvesting problow. A payoffatriz with a hypothetical set of probabilities is developed and presented in Subsection 4.2, nd stochestic dominance is epplied to the problen in Sobsection 4.3.

### 4.2 Peyoff Matrix

A payoff matriz is a table thoving the bonefity for each action and esch "'atate of the world". The payoff matrix for the biy scallop harvesting problemith quo.0002 and Er540 is presentedin Table S. In this erample, the states of the world are ropresented by combinations of three erogenons variables--price level, cost level and popalation size. The "actions" being congidered by the decisiom maker are the four iteriftive season openigat (t $=4,5,6$ or 7).

Benefits Tere meatured as the cumalative net present valuo of the total harvest. These were determined by finding the optimas $\lambda(0)$ fiter firing the
opening date to one of the forimiternatives, The cumalative pet present value associated with this $\lambda(0)$ is the manime payoff for given opening date and state of the world (that is, a constrained solution). Dse of these values in the payoff matrix implicitly assume: that fishermen will optinize their fishing effort subsequent to the seaton opening, thas stopping at exactly the optimal tine. It is probably not possiblefor the harvesting sector to respond in this way, but the atsusption is nocessary to provide a comoon busis for calculating payoff. Payoffs asociated with the unconstrained optimal solntions are indicated by an asterisz in Table 5 .

By constraction, none of the four actions doninates the others. That is, each action is optinal for at least one state of the world. This occurs becase each alternative was obtaiped as a solution to the optimal control model. Examination of the payoff matrix indicates, however, that most of the optinal solotions are associated with $t=5$ or $t=6$.

In addition to calculating benefits for each outcome, probabilities must be assigped to each value of the erogenous variables. The selection of these probabilities is important, as the choice may change if the probabilities change. For variables controlled largely by physical factors-such as water temperature--probabilities can be assigned on the basis of diatribntions of past events. For other variables, probabilities mast be assigned subjectively, reflecting the decigion maker's best judgaent. For illastration purposes, probabilities were prbitrarily assigned to the two price levels, two cost levels and five population sizes in the bay scallop problemas fallows:

Prob( $\left.x_{0}=13,000,000\right)=1 / 9$
Prob $\left(x_{6}=18,000,000\right)=2 / 9$
Prob $\left(x_{0}=23,000,000\right)=3 / 9$
$\operatorname{Prob}\left(x_{0}=28,000,000\right)=2 / 9$
Prob $(x,=33,000,000)=1 / 9$

$$
\begin{aligned}
\text { Prob(high price level) } & =2 / 3 \\
\text { Prob(low price level) } & =1 / 3 \\
\text { Prob(high cost level) } & =1 / 3 \\
\text { Prob(low cost level) } & =2 / 3
\end{aligned}
$$

The joint probability for each of the 20 outcones was calcilated as the product of the three probabilities astociated with each set of erogenons variables. This assumes the tariables are independent, which is a resonably safe assomption here. If independence cannot be asimed, however. conditional probabilities shonld be used.

Dsing these probabilities, tho expected valine for each of the four alternative actions was calculated (Table 5). Opening the season in the sixth week ( $\mathbf{t}=5$ ) has the highest expected valoe (71,135), followed closely by $t=4(69,871)$ and $t=6(59,226)$. Opening theseason in the eighth week ( $t=7$ ) results in a nuch lower expected value ( 20,947 ). A risk-neutral individual would select $t=5$ as the best teason opening, since it has the highest expected payoff (given the selected probabilities). Arisk-averse individual, however, is more interested in the probabilities associated vith the lower payoffs.

Table 5. Payoff matrix of comiative net present value (1967 dollart) for the bay seallop haryesting problen ( $q=0.0002$, Ex540 boat-diys). Asterisks indicate maimum value for each state of the world.

| State of the morld | Week of Sesson Opening |  |  |  | $\begin{gathered} \text { Joint } \\ \text { probibility } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $t \times 4$ | $t=5$ | $t=6$ | t-7 |  |
| Prico=10w, Costehigha |  |  |  |  |  |
| $\mathrm{I}_{*}=13^{\text {b }}$ | 0 | 0 | 0 | 0 | 0.012 |
| $\mathrm{x}_{4}=18$ | 0 | 0 | 0 | 0 | 0.025 |
| $\mathrm{x}_{4}=23$ | 4052 | 8866 | 10239* | 6613 | 0.037 |
| $\mathrm{x}_{4}=28$ | 22893 | 28110* | 28406 | 12982 | 0.025 |
| $\mathrm{X}_{4}=33$ | 47180 | 51870** | 44280 | 19351 | 0.012 |
| Price=10\%, Cost=10\% |  |  |  |  |  |
| $\mathrm{x}_{0}=13$ | 0 | 0 | 0 | 0 | 0.025 |
| $\mathrm{X}_{0}=18$ | 1983 | 5753 | 6829** | 4781 | 0.049 |
| $\mathrm{X}_{6}=23$ | 21175 | 25036 | 25276* | 11150 | 0.074 |
| $\mathrm{x}_{4}=28$ | 46594 | 49510* | 46537 | 17519 | 0.049 |
| $\mathrm{X}_{0}=33$ | 74936 | 77237* | 67799 | 23888 | 0.025 |
| Price=high, Cottwhigh |  |  |  |  |  |
| x. $=13$ | -403 | 2460 | 3789 | 3818** | 0.025 |
| $\mathrm{x}_{4}=18$ | 26919 | 30165 | 31065* | 13406 | 0.049 |
| $x_{0}=23$ | 68376 | 71919** | 64877 | 23432 | 0.074 |
| $\mathrm{x}_{\mathrm{m}}=28$ | 117791 | 119718* | 98689 | 33457 | 0.049 |
| $\mathrm{X}_{8}=33$ | 170996 | 171734* | 132500 | 43483 | 0.025 |
| Price=high, Cost $=10$ \% |  |  |  |  |  |
| $\mathrm{x}_{4}=13$ | 12025 | 14895 | 15474* | 7918 | 0.049 |
| $\mathrm{x}_{4}=18$ | 51637 | 53920* | 49197 | 17943 | 0.099 |
| $\mathrm{x}_{4}=23$ | 100642 | 101736* | 83008 | 27969 | 0.148 |
| $\mathrm{X}_{0}=28$ | 154969* | 151419 | 116820 | 37994 | 0.099 |
| $\mathrm{x}_{\mathrm{q}}=33$ | 212422* | 201102 | 150632 | 48020 | 0.049 |
| Expected value ${ }^{\text {c }}$ | 69871 | 71135 | 59226 | 20947 |  |
| Lowest payoff | -403 | 0 | 0 | 0 |  |
| Next-to-lowest payoff | 0 | 2460 | 3789 | 3818 |  |

[^1]
### 4.3 Application of Stochastic Dominance

Stochastic doninance rales were derived to choose between two actions (such as alternative season openings) by compating the payoff probability distribntions. As indicated above, a risk-nentell decision meker needs only an expected value to make a decioion. But a risk-averse decision maker needs to know what the tradeoffs are for the entire range of posibilities. Consider, for erample, the choice betwen opening the bay scallop season at $t=5$ versus $t=7$. The probability distribntions for these two totions are contrasted in Figure 5. Examination of Figure 5 indicates that most of the distribution for $t=7$ is to the left of the distribation for $t=5$, indicating that it is associated with lower payoffs in general. (The expected value for opening the season at $t=5$ is over three times that for $t=7$.)

Stochastic donimance rules provide criteria that wond be acceptable to all risk-averse decision makers for selecting one distribution over another. When one distribution can be shown to be preferred, it is said to "dominate'" the other distribrtion. The dominated distribution--andit's corresponding action--can then be eliainated from the list of alternetives. A good discussion of stochastic doninance, includirg mithenatical proofs and eraples, can be fond in Anderson (1974). Onig material essential for onderstanding and applying the procedure is repented here.

There are two categories of stochastic dominance that are used in this paper:

1) first degree stochastic doninance (FSD), Thteh applies to all individunls. incloding those who are risk-loving and risk-peotral, and
2) second degree stochatic dominatice (SSD), which applites only to riskaverse decision makers.

Additional degrees of stochastic dominance can be generated (see Anderson (1974)), but they are applicable to soalier sets of decision mikers.

The rules of stochastic doninance come from the following two theorens (Anderson 1974):

Theorem 1: The probability distribution for action $A$ dominates the probability distribntion for action by FSD if and only if the cumulative probability distribation for action $A$ is 1 ess than or equal to the cumulative probability distribution for action betall payoffs, with strict inequality for at least one payoff.

Theorem 2: The probability distribotion for action a dominates the probability distribution for action B by SSD if and only if the cumalative ares under the cumalative probability distribution curve for action $A$ is less than or equal to that for action $B$ at 1 payoffs. with strict inequility for at least one payoff.


[^2]The principle of $\operatorname{FSD}$ is demonstrated in Figure 6．The probability distribution function for two alternative actions is showil in the upper pane 1 ，and the cumulative probability distribotion is shom in the lower panel．The distribution for action $A$ is represented by＇rot＊＂and that for action B is represented by＇护\＃\＃＇A doninates B by FSD since the payoffs for A are higher at every camolative probability level．（In other rords，the cumulative probability distribution curve for $A$ is to the riaht of－or occesionalig coincident to－－that for $B$ over the entire rango of payoffis）In this case，all individuals wond prefet action $A$ to action B．If the comulative probability distributions were to crost ofer，as shown in Figure 7．then the test for FSD fails．

The principle of $S S D$ is demonstrated in Figure 7．Two different probability distributiont tre contrasted；＂中帎＂represents action $C$ and ＂H\＃\＃\＃＂represents action D．Since the cumative probability distributions intersect，the FSD test finils．Dp to the point where they eross over，action C would be preferted to action D because of the higher pagoffs at each probability level．But to the right of the cross－over，the sitation it reversed and action $D$ results in higher payoffs．

The test for SSD estontially deternines whether the decision maker would trade the gain in payoffs at the lowend for the loss at the high end if he selected action $C$ ．To deteraine this．tho cumplitive area ander the cumplative probability distribution is compared for the tro actions．As the theoref states，if the cumulative mea for $C$ is consistentiy lest than for， at some points，equal to）the camulative areafor action D，then action $C$ －ill doninste by SSD．This is the situation demontitutedinfigure 7，as shown in the bottom panel．All risk－averse individualt wond prefer action C to action D because pagoffaforaction C are not onlybigher than those for action $D$ the lower payoffs，but they are high enough to offset the posibility of losses at the high end of the pagoff scalo．Action D could nerer doninate action $C$ ，however，because of the potentisi for losses at the low payoffs．Wherens sone risk－averse decision makers wopld be willidg to make the trudeoff，there are always some who would not．

The calcalations needed to establish FSD or SSD can be time－conspming when there are several ections to compare or several states of the wot d． The following three corollaries of Theorem： 1 and 2 are helpful in reducing the number of comparisons：

Corollary 1：FSD implies SSD．
Corallary 2：The doninating action cannot have tho lowest payoff．
Corsllary 3：The doninating action mast have a higher expected payoff．

The first two corollaries are readily apparent from Fignres 6 and 7 ．The proof for the last coroliary is in Anderson（1974）．In the event that the two distributions have the same lowest payoff with the sane probability（as is the case in the example belowi，Corollary 2 extends to the next－to－the－ lowest payoff．


Payoff

Fisure 6. Grapbic extmple of first degree stochastic domintice. Distribntiont for action $A$ are represented by "***" and those for action B are represented by "制㫴". The distribation for action $A$ dominates $B$ by FSD.


Payoff
Figure 7. Graphic exapple of second degree tochastic doninance. Distributions for action $C$ are represented by "ober and those for action $D$ ate represented by "f(fy". The distribution for action $C$ dominates $D$ by SSD.

Applying these corollarles to the bay seallop problem, there is only one test posisible: Does t=5 doninate t=4? By corollary 3, no action con dominate te5 since it hes the bighest expected valie. And aince te4 has a lower cinlmum payoff, there is the possibility that $t=5$ can doninate $t=4$ by FSD or SSD. The lofest payoff and itaprobability are the sane for to5, $t=6$, and $t=7$. Since the next-to-the-1owest payoff for $t=5$ in lower than that for $t=6$ and $t=7$, it could not dominate those actions. Siailarly, the next-to-thelovest payoff for t=6 is lest than that for $t=7$, preventing that comprison. Bnt becanse $t=7$ has tho lowest expected value, it cannot dominite any of the others.

The probability distribotions, comulative probability distributions, and cumplative area under the cumbative probability distributions are contrasted for $t=4$ and $t=5$ in Table 6 . Comparing the cumplative probibility distributions, that for $t=5$ is 10 as than that for $t=4$ at all bot one payoff (indicated in Table 6-2 by an asterisk), cansing the test for FSD to fail. Honever, the test for SSD passed. The cpmolative aren for trifes greater than that for $t=5$, indicating that $t=5$ dominates by SSD. Consequently. the option to open the seasonat $t=4$ can be discarded, lenving $t=5, t=6$ nad $t=7$ as feasible alternatives.

One weakness of the stochastic dominanco appronch it its emphasis on the lovend of the payoff sealo. For example, it could not be demonstrated that $t=7$ vis doninated by any of tho other actions. even thogh it had a much lover expected value and most of the distifibution wat clearly associzted with lower payoffs. This occorred becanse $t=7$ was 'better" at only one point-
 Furthermore, the difference betmoen the payoffe at this point wis only 29 dollars. Only an extremely rist-averse fndipidul tould be meniling to trade this gatn for the substantial increase in payoffs that voold occur for t=6 at all other states of the world. Nonethelest, the regalator could atill discard $t=7$ fros the set of regriatory options, rationalizing thet only a very small minority woald object. Thus, this analyais can provide insight for use in mating subjective selections.

At this point, the fishery manager must select one of the remaining options on the bast of other factors bot tacloded in the problemformulstion. For erample, the potentidifornatimimortality to occur due to catastrophic eveata ( (uch as burricanes or sefere cold) alway exists, but is difficult to define and include in the equation of motion. Another important factor that is difficuit to model is the effect of inclinate veather on effort lovels. High winds and sometimes ice and snow can prevent fishermen fromscalloping. Accounting for thesofactots onbjectively woid favor opening the cemion on one of the earlier alternative opening dates. Also. political realities may influence the deciaion.

But oven though a single "bert" solntion cannot usumily be obtained poing the conbined tools of optimel control thoory and stochastic dominance, the options facing the fishery menger can bo reduced. Perhaps most
 defend his decision.

Table 6. Distributions for two alternative season openings for bay



|  |  |  |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: |
| -403 | .025 | 0 | 0.025 | 0 | 0 | 0 | 0 |
| 0 | .062 | .062 | 0.087 | 0.062 | 10 | 0 | 10 |
| 1983 | .049 | 0 | 0.136 | 0.062 | 183 | 123 | 60 |
| 2460 | 0 | .025 | 0.136 | 0.087 | 247 | 153 | 95 |
| 4052 | .037 | 0 | 0.173 | 0.087 | 464 | 291 | 173 |
| 5753 | 0 | .049 | 0.173 | 0.136 | 758 | 439 | 319 |
| 8866 | 0 | .037 | 0.173 | 0.173 | 1297 | 862 | 434 |
| 12025 | .049 | 0 | 0.222 | 0.173 | 1843 | 1409 | 434 |
| 14895 | 0 | .049 | 0.222 | 0.222 | 2480 | 1905 | 575 |
| 21175 | .074 | 0 | 0.296 | 0.222 | 3875 | 3300 | 575 |
| 22893 | .025 | 0 | 0.321 | 0.222 | 4383 | 3681 | 702 |
| 25036 | 0 | .074 | 0.321 | 0.296 | 5071 | 4157 | 914 |
| 26919 | .049 | 0 | 0.370 | 0.296 | 5675 | 4714 | 961 |
| 28110 | 0 | .025 | 0.370 | 0.321 | 6116 | 5067 | 1050 |
| 30165 | 0 | .049 | 0.370 | 0.370 | 6877 | 5726 | 1150 |
| 46594 | .049 | 0 | 0.419 | 0.370 | 12955 | 11805 | 1150 |
| 47180 | .012 | 0 | 0.431 | 0.370 | 13201 | 12022 | 1179 |
| 49510 | 0 | .049 | 0.431 | 0.419 | 14205 | 12884 | 1321 |
| 51637 | .099 | 0 | 0.530 | 0.419 | 15122 | 13775 | 1347 |
| 51870 | 0 | .012 | 0.530 | 0.431 | 15245 | 13873 | 1372 |
| 53920 | 0 | .099 | 0.530 | 0.530 | 16332 | 14756 | 1575 |
| 68376 | .074 | 0 | 0.604 | 0.530 | 23993 | 22418 | 1575 |
| 71919 | 0 | .074 | 0.604 | 0.604 | 26133 | 24296 | 1838 |
| 74936 | .025 | 0 | 0.629 | 0.604 | 27956 | 26118 | 1838 |
| 77237 | 0 | .025 | 0.629 | 0.629 | 29403 | 27508 | 1895 |
| 100642 | .148 | 0 | 0.777 | 0.629 | 44125 | 42230 | 1895 |
| 101736 | 0 | .148 | 0.777 | 0.777 | 44975 | 42918 | 2057 |
| 117791 | .049 | 0 | 0.826 | 0.777 | 57449 | 55392 | 2057 |
| 119718 | 0 | .049 | 0.826 | 0.826 | 59041 | 56890 | 2151 |
| 151419 | 0 | .099 | 0.826 | 0.9256 | 85226 | 83075 | 2151 |
| 154969 | .099 | 0 | 0.925 | 0.925 | 88159 | 86358 | 1800 |
| 170996 | .025 | 0 | 0.950 | 0.925 | 102983 | 101183 | 1800 |
| 171734 | 0 | .025 | 0.950 | 0.950 | 109685 | 101866 | 1818 |
| 201102 | .049 | 0 | 0.999 | 0.950 | 131584 | 129766 | 1818 |
| 212422 | 0 | .049 | 0.999 | 0.999 | 142893 | 140520 | 2373 |

[^3]Table 7. Distributions for tro iternative season opening for bay scallops-t=6 versus $t=7$-for $\quad$ ee with stochastic doninance rules.


| 0 | .062 | .062 | 0.062 | 0.062 | 0.0 | 0.0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: |
| 3789 | .025 | 0 | $0.087 *$ | 0.062 | 234.9 | 234.9 | 0 |
| 3818 | 0 | .025 | 0.087 | 0.087 | 237.4 | 236.7 | -1 |
| 4781 | 0 | .049 | 0.087 | 0.136 | 321.2 | 320.5 | -1 |
| 6613 | 0 | .037 | 0.087 | 0.173 | 480.6 | 569.6 | 89 |
| 6829 | .049 | 0 | 0.136 | 0.173 | 499.4 | 607.0 | 108 |
| 7918 | 0 | .049 | 0.136 | 0.222 | 647.5 | 795.4 | 148 |
| 10239 | .037 | 0 | 0.173 | 0.222 | 963.2 | 1310.7 | 348 |
| 11150 | 0 | .074 | 0.173 | 0.296 | 1120.8 | 1512.9 | 392 |
| 12982 | 0 | .025 | 0.173 | 0.321 | 1437.7 | 2055.2 | 617 |
| 13406 | 0 | .049 | 0.173 | 0.380 | 1511.0 | 2191.3 | 680 |
| 15474 | .049 | 0 | 0.222 | 0.380 | 1868.8 | 2977.1 | 1108 |
| 17519 | 0 | .049 | 0.222 | 0.429 | 2322.8 | 3754.2 | 1431 |
| 17943 | 0 | .099 | 0.222 | 0.528 | 2416.9 | 3936.1 | 1519 |
| 19351 | 0 | .012 | 0.222 | 0.540 | 2729.5 | 4679.6 | 1950 |
| 23432 | 0 | .074 | 0.222 | 0.614 | 3635.5 | 6883.3 | 3248 |
| 23888 | 0 | .025 | 0.222 | 0.639 | 3736.7 | 7163.3 | 3427 |
| 25276 | .074 | 0 | 0.296 | 0.639 | 4044.9 | 8050.2 | 4905 |
| 27969 | 0 | .148 | 0.296 | 0.787 | 4842.0 | 9771.0 | 4929 |
| 28406 | .025 | 0 | 0.321 | 0.787 | 4971.3 | 10115.0 | 5144 |
| 31065 | .049 | 0 | 0.370 | 0.787 | 5824.9 | 12207.6 | 6383 |
| 33457 | 0 | .049 | 0.370 | 0.836 | 6709.9 | 14090.1 | 7380 |
| 37994 | 0 | .099 | 0.370 | 0.935 | 8388.6 | 17883.0 | 9494 |
| 43483 | 0 | .025 | 0.370 | 0.950 | 10419.5 | 23015.2 | 12596 |
| 44280 | .012 | 0 | 0.382 | 0.950 | 10714.4 | 23772.4 | 13058 |
| 46537 | .049 | 0 | 0.431 | 0.950 | 11576.6 | 25916.5 | 14340 |
| 48020 | 0 | .049 | 0.431 | 0.999 | 12215.8 | 27325.4 | 15110 |
| 49197 | .099 | 0 | 0.530 | 0.999 | 12723.1 | 28501.2 | 15778 |
| 64877 | .074 | 0 | 0.604 | 0.999 | 21033.5 | 44165.5 | 23132 |
| 67799 | .025 | 0 | 0.629 | 0.999 | 22798.3 | 47084.6 | 24286 |
| 83008 | .148 | 0 | 0.777 | 0.999 | 32364.8 | 62278.4 | 29914 |
| 98689 | .049 | 0 | 0.826 | 0.999 | 44548.9 | 77943.7 | 33395 |
| 116820 | .099 | 0 | 0.925 | 0.999 | 59525.2 | 96056.6 | 36531 |
| 132500 | .025 | 0 | 0.950 | 0.999 | 74029.2 | 111720.9 | 37692 |
| 150632 | .049 | 0 | 0.999 | 0.999 | 91254.6 | 129834.8 | 38580 |

[^4]A bioeconomic optimal control model was constructed for the bay scallop fishery to determine the optimat season opening/closing schedrle. Quotas were not inposed in the bodel, nor were there restrictions on the number of fishing days allowed pet weth. Other regilitions in corrent practice in North Carolina were mintained. 120 separate scenarios were creafed using tro price estinates, two cost estimates, five popalition size estimates, three estimates of the catchability coefficient and two effort levels. Four possibilities for the optinal tipe to open the season resulted, ranging from the second week in January to the first week in Febriary. Appiging stochestic doninance to subset of these solntions asing at of hypothetical probabilities for the states of the morld reduced the alternative opening seaton dates to three. The current practice of opening the season in eatly December was sub-optimal for all scenarios,

The corresponding season for the ontegalated case was alao determined for etch of the 120 input combinations. The untegulatod case represents the tino when it is profitable to harvest soallops under the asomptions of the model but with the opportanity cost of harvesting set eqnal to zero. Season openings ranged fron the first week of December to the lat week of Jenuary. The optimal solution with regulation was typicalig two-three wecks later than the folption for the anregulated case. Delaying the season opening substantially increased the present value of the harvest for all comparisons.

The results of this analysis clearly spgest that gains can be obtained by delaying the opening season for bay temllops beyond the traditional Decenber opening. The size of the gain dopends on prices, costs, population sizes and other variables. Gains also come from olininating the quota and deily fishing restrictions. The basic principle bohind optinal harvesting of a resource throghtine is to delay harestint only mitil the increase in value of the resource is no longer greater than the return that could be obteined by haresting the resource and investing the proceeds elsevere. For an annual fishery such at the North Carolizabay scallopfishery, the optimal bariest strategy woud be to mply as mich fishing effort to the fishery es possible (end still mintain profitability to each unit of offort) once the optimal time to harvest has arfived. The reatrictions on catch and effort are inherently inconsistent with this optinal harvesting strategy.

While this analysis provides useful insight tato the problem of when to open the bay scallopseason, there are several aspects of the model that should be further developed before the sodel can be routinely usod to predict the season opening. The ascmpption of a constant effort level throughout the entire harvest season is perhaps the most implansible aspect of the model. As discossed earlier, fishing effort is a function of expocted profit, wich in turn depends ppon costs, sarket price and the density of the seallop beds. In addition, offort in the first fem weeks of the season is greater becanse of participation by part-tiners who stop fishing when the weather gets colder and the population becomes less dense. In order for the model to be responsive to these factors. a supply function for effort needs to be developed in manner similar to that used by Eelloge (1985) for the New

River shrimp fisherg. At the time of this study, sufficent datefor such a fanction did not exist, and only ad boc estinates of fishing effort coold be used. (See Soction $\mathbf{3 . 5}$ for reconmendations on further research needs.)

Another ofersimplificstion enbodied in the model is the assumption of zeronatural mortality during the harvest semon. The effect of non-zero matural mortality on the solution wonld be an oftilier season opening than predicted here. (Some insight into the effect: of non-zero natoxal mortality can be obtained by conparing the effects of different levela of fishing mortality (see Appendix B) on the opening date.) Incorporation of matural mortality coefficient in the equation of motion would be aseful refinement to tho model, but this refinement must wait the mailibility of a suitable mortality estimate.

Bioecononic optinal control models are pot the only input that should be used by the fishery manger in pronglating regulationt. Some aspects of a fishery are not taily incorporatad into model, such as income redistribution, politicel tealities, dynanics of ecosyeters, and catatrophic weather events. Bot manegement models can provide important insights that cannot be obtained in any other way. For eximple, it world be difficult to evalute the cost effectiveness of a proposed regulation mithont use of a management model. The example presented in this study should be useful as a gide for development of management models for other fisherias.

HALL, DARTIN C. 1977. A note on natural production functiont. Jonrnal of Environmental Economics and Mangement 4:258-264.

FANNESSON, ROGNYALDUR. 1983. Bioeconomic production function in fisheries: theoretical and empirical anatyais. Canadian Jouranl of Fisheries and Aquatte Science 40:968-982.

HSIAO, YD-MONG. 1985. Management of mitiple cohortfishory: the bard clan in Great South Bay-coment. Aserican Journal of Agriciltural Economic: (in press).

HOANG, C. C., I. B. YERTINSEY, AND N. J. WILIMOVSEY. 1976. Optimel controis for a ingle species fishery and the economic valne of research. Journal of the Fisheries Resourch Board of Cunada 33:793-809.

INTRILIGATOR, M. D. 1971. Matheratical Optimization and Econoilc Thoory. Prentice-Ha11. Inc., Englemood Clifft, New Jertey.

JOHNSON, THOMAS. 1985. Growth and havest mithout caltivation: an introduction to dynamic optinization. Econosics Research Report No. 48. Department of Econonica and Busineff, North Carolina Stite Jivivitity, Raleish.

EALIEN, MORTON I., AND NANCY L. SCHWARTZ. 1981. Dynamic Optimization: The Calulas of Variationsand Optimil Control in Econonics and Management. Elsevier North Holland Inc., New York.

EELLOGG, $\mathrm{B}, \mathrm{L}, \mathrm{AND}$ DENNIS SPITSBEEGEN, 1983. Predictive growth model for the meat veight (adductor muscle) of bay acellops in North Carolinn. UNC Set Grant College Publication DNC-SG-83-6.

ERILOGG, R. L. 1985. A bioeconomic model for doterstaing the optinal timing of harvest with epplication to two North Caroline fisheries. Dapublished Ph.D. thesis, North Carolina State University, Ealoigh, North Carolina.

LEVBARI, DAYID. RON MICHENEP, AND LEONATD J. MIRMA, 1981. Dynaeic progianing models of fishing: comptition. American Economic Reviey 71:649-661.

LOUCES, P. H.. ARD W. H. SUTCLIFFE JR, 1978. A simple fish-population model includitis environsental infiaence, for two tostern atiantic shelf tock. Journal of the Fisheries Resenrch Board of Canada 35:279-285.

MALIARIS, A. C. ANG W. A. Broct. 1981. Stochestic Methods in Economics and Finance. North Holland.

MENDELSOHN, ROBERT. 1981. The choice of discount ratef for pabic profects. The Aperican Econonic Review 71:239-241.

O'ROUREE, D. 1971. Economic potential of the California triwl fishery. American Journal of Agricnltural Economic: 53:583-592.

PINDYCI, R. S. 1984. Uncertainty in the Theory of Renetable Resource Markets. Review of Economic Studies. pp. 289-303.

RICEER, W. E, 1975. Conputation and Interpretation of Biological Statistics of Fish Popalations. Bulletin of the Fishertes Research Boned of Catada 191. Ottawa, Canada.

SISSENVINE, M, P, 1974. Variability in recraitment and equilibrium catch of the Sonthern New England yellotial flonnder ftshery. J. Coni, int. Explor. Mer 36:15-26.

SOOTH ATLANTIC FISBERY MANAGEMENT CODNCIL, 1981. Profile of the calitico scallop fishery in the South Atlantic and Gulf of Meytco. South Atlantic Fishery Management Conncil. Charleston, Sonth Carolina,

STAAND.I. E., AND D. L. EUETB. 1977. Amanagementmodel for maltispecies fishery. Pages $\mathbf{3} \mathbf{3 1 - 3 4 8}$ in Anderson, Lef G. (Editor). Econopic Itpacts of Extended Fisheries Jurisdiction. Anp Arbor Science Publishers. Inc., Anp Arbor, Michitan.

WATERS, JAMES R., J. E. EASLEY JR., AND LEON E. DANJELSON. 1980, Economic trade-offs and the North Carolina shrimp fishery. Anerican Joural of Agricultaral Economics 62:124-129.

Waters. JAMES R. 1983. Economic antysis of the pink shitmp discatd problem in Pamico Sound, North Carolina, papublished Ph.D. thesis. North Carolina State University, Raleigh, North Carolina.

WINKLER, R. L. 1972. An introdaction to Bayesiadinference and decision. Holt. Rinehart and Winston, Inc., Atlanta

NOLFE, P. M. AND C. P. KOELLING. 1983. Basie Engineering and Scientific Programs for the IBM PC. Robert J. Brady Co., Bowie Maryland.

APPENDIX A: SOLUTION ALGORITHH FOR THE BAY SCALLOP HARVESTING PROBLEM

The following progrem: is witten in IBM-PC Basic.

10 REM BAY SCALLOP PROGRAM
20 REM
30 REM FUNCTIONS USED IN TEE PROGRAK
40 REM
50 DEF FNCUMTEMP $(T)=20.203^{*}(T+4.3)-1.012^{*}(T+4.3)^{\wedge} 2$ +.027* (T+4.3) "3
60 DEF FNSHELLS $(C T, T)=6.378 *\left(1-E X P\left(.0298^{*}(T+4.3)-.0065 * C T\right)\right)$
+5.9*EXP (.0298* (T+4.3)-.0065*CT)
70 DEF FNMAX (SHELLS $)=.027 * S H E L L S{ }^{*} 3$
80 DEF FNB (CT, T $)=-.4415 *(T+4.3)+.0969 * C T+.0034 *(C T \wedge 2) /(T+4.3)$
90 DEF FNMEAT $(\operatorname{MAX}, \mathrm{B})=.002205^{*}($ MAX* $(1-E X P(-B))+2.522 * E X P(-B))$
100 DEF FNDISCOUNT (T) $=\operatorname{EXP}(-.001827 * T)$
110 DEF FNPRICE (T) $=-4.24904127 *+4.73008 \mathrm{E}-03 *$ INCOME
-1.85448147 *SEAP + $+56224238 * * S E A P 1+1.69072116 * * S E A P 2$
-. 00000054761407 * ${ }^{(C A L Q+.38661194 \# * T-4.133764 E-02 *(T \wedge 2) ~}$
+1.19521E-03*(T"3)


130 REM
140 REM INITIALIZING VARIABLES AND SETTING CONSTANTS
150 REM

$170 \mathrm{X}=\mathrm{X0}$
$180 \mathrm{Q}=.0002 \mathrm{I}^{\prime}$ VALUES USED ARE . $0001, .0002 \mathrm{AND} .0003$
190 QPRINT=Q
200 REM SEE LINE 990 AND 770 WHERE Q IS ALSO INITIALIZED
$210 \mathrm{E}=540 \quad$ 'VALUES USED ARE 540 AND 750
220 LIMIT $=50 * 435 \quad$ CHANGE " 50 " TO QUOTA IF DESIRED
230 CUMPV=0: CUHHARV=0
$240 \operatorname{cosT}=42.55$
260 REM EXOGENOUS VARIABLES FOR THE PRICE FUNCTION
270 REM
280 REM
300 SEAP $=21$
$310 \mathrm{SEAPl}=2!\quad 1$
320 SEAP $2=21 \quad 1$
330 CALQ=531369!
340 INCOME $=882$ VALUES USED ARE:

| $1980-81$ | $1981-82$ |
| ---: | ---: |
| 2.00 | 1.31 |
| 2.00 | 1.31 |
| 2.00 | 1.31 |
| 531,369 | $1,084.457$ |
| 882 | 887 |

360 REM

370 INPUT "INITIAL VALUE FOR LAMBDA"; LAMBDA
380 REM
 TAB (26) "X" TAB(32) "HARVEST" TAB(41) "PRICEPER" TAB(53) "PV" TAB(58) "Q" TAB(65) "CUMPV" TAB (72) "CUMHARV"
430 REH
440 REM THE MAIN PROGRAM
450 REM
460 FOR $T=0$ TO 17
470 XPRINT=X
LAMPRINT=LAMBDA
490 IF Q*X>LIMIT THEN Q=LIMIT/X 'CORRECTS Q WHEN LIMIT BINDS
500 PRICE=FNPRICE (T)
510 DISCOUNT=PNDISCOUNT (T)
520 REM
50 REM CALCULATION OF MEAT SI2E AT TIME T
540 REM
550 CT=FNCUMTEMP (T)
560 SHELLS=PNSHELLS (CT,T)
570 MAX=FNMAX (SHELLS)
580 B=FNB (CT,T)
590 NEAT = FNMEAT (MAX,B)
600 PRICEPER=PRICE*MEAT
6 1 0 ~ R E M
620 REM CHECK TO SEE IF SEASON SHOULD OPEN THIS WEEK
6 3 0 ~ R E M
640 SWITCH=(PRICE*HEAT*E*Q*X-COST*E)*DISCOUNT-LAMBDA*E*Q*X
650 REM
660 IF SWITCH<0 THEN PHI=0
670 IF SWITCH>0 THEN PHI=1
680 IF SWITCH<0 THEN PV=0
690 IF SWITCH<0 THEN HARVEST=0
700 IF PHI=0 THEN GOTO 1410
710 REM
720 REM CALCULATION OF NEXT X AND LAMBDA IF SEASON IS OPEN
7 3 0 ~ R E M ~ C A L C U L A T E S ~ P R E S E N T ~ V A L U E ~ A N D ~ H A R V E S T ~ F O R ~ T H E ~ W E E K
750 HARVEST=0: PV=0
760 FOR N=I TO 10
770 Q=.0002
780 IF Q*X>LIMIT THEN Q=LIMIT/X 'ADJUSTS Q IF LTMIT BINDS
790 IF Q*X>LIMIT THEN QPRINT=LIMIT/X 'DETECTS Q CONSTRAINT
7 9 5
800 REM CALCULATION OF PV AND HARVEST
810 REM HOLDS MEAT SIZE, PRICE, AND DISCOUNT CONSTANT
FOR THE WEER
SUBHARV=H*Q*E*X
SUBPV=H*(PRICE*MEAT*E*Q*X-COST*E) *DISCOUNT
HARVEST=HARVEST+SUBHARV
PV=PV+SUBPV
REM CALCULATION OF X-DOT WITH RUNGE-KUTTA
KOX=-E*Q*X
KIX=-E*O* (X+.5*H*KOX)
K2X=-E* Q* (X+.5*G*R1X)
K3X=-E* Q* (X +H*K2X)
X=X+(H/6)* (K0X+2*K1X+2*K2X +K3X)
NEXT N
REM
REN CALCULATION OF LAMBDA-DOT WITH RUNGE-KUTTA
960 REM ALLOWS DISCOUNT, PRICE AND MEAT SIZE TO CHANGE
WITH EACH ITERATION
970 REM HOLDS Q CONSTANT AND EQUAL TO Q AT TIME T
980 REM
990 Q=.0002 'RE-SETS O TO Q AT TIME T

```
```

1000 IF Q*XPRINT>LIMIT THEN Q=LINIT/XPRINT
1010 REM
1020 FOR J=1 TO 10
1030 H=.l
1040 RT=T+(J-1)*H 'RT STANDS FOR REAL TIME IN WEEKS
1050 REM
1060 REM CALCULATION OF KO
1070 REM
1080
K.OL=E*Q*LAMBDA-PRICE*MEAT*Q*E*DISCODNT'
1090 REM
1100 REM CALCULATION OF K1 AND K2
1110 REM
DISCOUNT=FNDISCOUNT(RT+.5*H)
CT=FNCUMTEMP(RT+.5*H)
SHELLS=FNSHELLS (CT,RT+.5*H)
MAX = FNMAX (SHELLS)
B=FNB (CT,RT+.5*H)
MEAT=FNHEAT (MAX,B)
PRICE=FNPRICE (RT+.5*H)
REM
KlL=E*Q* (LAMBDA + .5*H*K0L) -PRICE*MEAT*Q*E*DISCOUNT
K2L=E*Q* (LAMBDA+.5*H*KlL) -PRICE*MEAT*Q*E*DISCOUNT
REM
REM CALCULATION OF K3
REM
DISCOUNT=FNDISCOUNT (RT+H)
CT=FNCUHTEMP (RT+H)
SHELLS=FNSHELLS(CT,RT+H)
MAX=FNMAX (SHELLS)
B=FNB (CT,RT+H)
MEAT=FNMEAT (MAX,B)
PRTCE=FNPRICE (RT+H)
REM
K3L=E*Q* (LAMBDA+B*K2L) -PRICE*MEAT*Q*E*DISCOUNT
1340 REM
1350 REM CALCULATION OF LAMBDA
1360 REM
1370 LAMBDA=LAMBDA+(E/6)* (KOL+2*K1L+2*K2L+K3L)
1380 NEXT J
1390 IF LAMBDA<0 THEN LAMBDA=0 'THIS KEEPS LAMBDA POSITIVE
1400 REM
1410 CUMPV=CUMPV+PV 'CALCULATION OF CUM. PRESENT VALUE
1420 CUNHARV=CUMHARV +HARVEST 'CALCULATION OF CUH. HARVEST
1430 PRINT USING US;T,SWITCH,PHI,LAMPRINT,XPRINT,HARVEST,
PRICEPER,PV,QPRINT,CUMPV,CUMHARV
1440 NEXT T
1445 PERCENT=CUMHARV/XO
1446 PRINT "percent=";PERCENT
1450 END

```

\title{
APPENDIX B: OPTIMAL SOLUTIONS TO THE BAY SCALLOP harvesting problem
}

\begin{tabular}{|c|c|c|c|c|}
\hline & 11111 & 1 1 1 \＃ & 11 rom & 159 \\
\hline & \begin{tabular}{llll|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \(1111 \begin{gathered}\text { n } \\ 1\end{gathered}\) &  &  \\
\hline & 11111 & \[
1118 \underset{8}{8}
\] &  & \[
\begin{array}{r}
6998 \\
10989 \\
6898 \\
6086
\end{array}
\] \\
\hline &  &  &  &  \\
\hline & 11111 & 1 l ＋ &  & \(\cdots \infty\) \\
\hline \[
\begin{aligned}
& 8 \\
& 8 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
1 \begin{array}{l|l|l|}
1 & 1 & 1 \\
1 & 1
\end{array}
\] & \[
1
\] &  &  \\
\hline & 11111 & \[
111 \underset{0}{6}
\] & \[
11898
\] &  \\
\hline &  &  &  & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}=\begin{gathered}
9 \\
6
\end{gathered}
\] \\
\hline &  &  &  &  \\
\hline &  & \begin{tabular}{l}
す す す す \\

\end{tabular} & \begin{tabular}{l}
のッツmm \(4 \pi 4 m m\) \\

\end{tabular} & 南声志志 \\
\hline &  & 욱 &  & \[
\boldsymbol{m}_{\boldsymbol{H}}^{\infty} \boldsymbol{x}_{\boldsymbol{N}}^{\infty} \underset{m}{m}
\] \\
\hline
\end{tabular}
Tablp B1．（continued）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{4}{|l|}{Bont－deys pet weok \(=\mathbf{5 4 0}\)} & \multicolumn{4}{|l|}{Boat－days per week \(=750\)} \\
\hline \[
\underset{\text { (willions) }}{x_{0}} \operatorname{Cost}
\] & Prioet & \[
\begin{aligned}
& \text { Optimel } \\
& \text { setsing }
\end{aligned}
\] & \[
\underset{\lambda}{0 p t i m a l}
\] & \[
\begin{gathered}
\text { Total } \\
\text { prestint } \\
\text { value }
\end{gathered}
\] & Percent of tock hervested & \[
\begin{aligned}
& \text { Optinal } \\
& \text { senton }
\end{aligned}
\] & \[
\begin{gathered}
\text { Optima } 1 \\
\lambda
\end{gathered}
\] & Total present value & Percent of stock harvested \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
1 \mid 000 n
\] &  & \(\pm \infty\) ¢ 96 & \[
\underset{m}{6}+80
\] \\
\hline  &  &  &  \\
\hline  & \[
\begin{array}{r}
4698 \\
6888 \\
6858
\end{array}
\] &  &  \\
\hline  & \[
\begin{array}{llll}
0 & 0 & a & a \\
0 & 1 & 1 & 1
\end{array}
\] &  &  \\
\hline 1）¢0\％ &  &  & \[
\infty+\infty
\] \\
\hline  &  &  &  \\
\hline  &  &  &  \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 㕝总点点点 & 点曹点点点 &  &  \\
\hline & & & \\
\hline \(\cdots\) nnm & 8 & \(\square\) & 980 08 \\
\hline ＋\({ }^{*} \times\) & &  & \\
\hline
\end{tabular}

Table B2. (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
x_{0} \\
(m i l i o n s)
\end{gathered}
\]} & \multirow[t]{2}{*}{Cost} & \multirow[t]{2}{*}{Price \({ }^{\text {a }}\)} & \multicolumn{4}{|l|}{Bobt-deys per week \(=540\)} & \multicolumn{4}{|l|}{Boat-days per week \(=750\)} \\
\hline & & & \[
\begin{aligned}
& \text { Optima } \\
& \text { seasong }
\end{aligned}
\] & \[
\mathrm{OPt}_{\lambda}
\] & \[
\begin{gathered}
\text { Totel } \\
\text { presont } \\
\text { value }
\end{gathered}
\] & Percent of stock harvetted & \[
\begin{aligned}
& \text { Optimal } \\
& \text { season }
\end{aligned}
\] & \[
\underset{\lambda}{\text { Optimal }}
\] & \[
\begin{gathered}
\text { Total } \\
\text { prosent } \\
\text { value }
\end{gathered}
\] & Percent of stock harvested \\
\hline \multicolumn{11}{|l|}{\(q=0.0003\)} \\
\hline 13 & 42.55 & Low & 7 & 0.0015 & 1,573 & 15 & 7 & 0.0015 & 1,276 & 20 \\
\hline 18 & 42.55 & 10w & 6-8 & 0.0038 & 17.418 & 40 & 6-7 & 0.0040 & 18,090 & 37 \\
\hline 23 & 42.55 & 10w & 6-9 & 0.0055 & 42.861 & 48 & 6-8 & 0.0060 & 45,224 & 50 \\
\hline 28 & 42.55 & 10w & 5-9 & 0.0057 & 73.701 & 56 & 6-9 & 0.0066 & 77,309 & 60 \\
\hline 33 & 42.55 & 10w & 5-10 & 0.0066 & 107.737 & 63 & 6-9 & 0.0075 & 113,599 & 60 \\
\hline 13 & 34.04 & 10w & 6-7 & 0.0036 & 8,304 & 28 & 6-7 & 0.0030 & 8,159 & 37 \\
\hline 18 & 34.04 & 10\% & 6-9 & 0.0054 & 31,967 & 48 & 6-8 & 0.0055 & 33,749 & 50 \\
\hline 23 & 34.04 & 10w & 5-9 & 0.0057 & 62,970 & 56 & 6-9 & 0.0068 & 66,202 & 60 \\
\hline 28 & 34.04 & 10w & 5-10 & 0.0067 & 98,006 & 63 & 6.9 & 0.0076 & 102,492 & 60 \\
\hline 33 & 34.04 & 10\% & 5-10 & 0.0075 & 134,934 & 63 & 5-9 & 0.0081 & 143,099 & 68 \\
\hline 13 & 42.55 & bigh & 6-8 & 0.0082 & 29,457 & 39 & 6-8 & 0.0084 & 30,222 & 50 \\
\hline 18 & 42.55 & high & 5-9 & 0.01071 & 78,080 & 56 & 6-9 & 0.0110 & 81.527 & 60 \\
\hline 23 & 42.55 & high & 5-10 & 0.0120 & 136,033 & 63 & 5-9 & 0.0124 & 140.959 & 68 \\
\hline 28 & 42.55 & high & 5-11 & 0.0127 & 199,263 & 68 & 5-10 & 0.0135 & 207,314 & 75 \\
\hline 33 & 42.55 & high & 5-12 & 0.0131 & 265,578 & 73 & 5-10 & 0.0142 & 278,061 & 75 \\
\hline 13 & 34.04 & high & 5-9 & 0.0090 & 47,569 & 56 & 6-8 & 0.0106 & 49,126 & 50 \\
\hline 18 & 34.04 & high & 5-10 & 0.0119 & 104,096 & 63 & 5-9 & 0.0112 & 107.576 & 68 \\
\hline 23 & 34.04 & high & 5-11 & 0.0129 & 167,077 & 68 & 5-10 & 0.0128 & 174.341 & 75 \\
\hline 28 & 34.04 & high & 5-12 & 0.0134 & 234,114 & 73 & 5-10 & 0.0144 & 245.088 & 75 \\
\hline 33 & 34.04 & high & 5-13 & 0.0138 & 303,550 & 77 & 5-11 & 0.0148 & 319.861 & 80 \\
\hline
\end{tabular}
"The "high" price was produced by solving the price equation ustng the 1980-81 avorage of the
orogenous variables (ses scallop price, callico soallop landings, and income). The "low"
prico wis produced using the 1981-82 average of these variablos.
The optimal teision is in wooks where the fift weok is the first sovin days in December. seasion should opon at the betipning of the sisth woek (delaying the opening five watk pati December 1) and remain open through the thirteenth week.
Table B2．Summary of unregulated harvesting solutions for 120 combinations of exogenous variables．Present value nid cost are in undts of 1967 dollars．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{3}{|l|}{Boat－days per weak＝ 540} & \multicolumn{3}{|l|}{Boat－days por week \(=750\)} \\
\hline \[
\begin{gathered}
x_{0} \\
(\text { millons })
\end{gathered}
\] & Cost & Price \({ }^{\text {b }}\) & season \({ }^{\text {c }}\) & Total prosent value & Percent of stock harvested & ceasorn & Total present valu & Percent of stock harvested \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \(1 \pm 111\) & 11100 & \(1 \mid t 00\) & \(1500 \%\) ¢ \\
\hline & 1 1 1 & \[
1 \left\lvert\, 1 \begin{aligned}
& \infty \\
& 1 \\
& \hline
\end{aligned}\right.
\] &  &  \\
\hline &  &  &  & \[
\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 \\
0 & 0 & 1 & 1 \\
0 & 0 & c
\end{array}
\] \\
\hline & 1111 & 1 i m & 18 ¢ &  \\
\hline \[
\begin{aligned}
& \stackrel{-}{8} \\
& 8 \\
& \hline 8 \\
& 8
\end{aligned}
\] & \[
1111
\] & \[
1 \begin{gathered}
0 \\
1 \\
1 \\
108
\end{gathered}
\] &  &  \\
\hline &  &  &  &  \\
\hline &  &  &  &  \\
\hline &  & \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
nnmmn \\

\end{tabular} & \begin{tabular}{l}
すす す す す \\

\end{tabular} \\
\hline & \[
{ }_{\sim}^{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}
\] &  &  &  \\
\hline
\end{tabular}
Table B2. (continced)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{3}{|l|}{Boat-daya per week \(=540\)} & \multicolumn{3}{|l|}{Boat-dayt por waek \(=750\)} \\
\hline \[
\underset{(m i l l i o n s)}{x_{a}}
\] & Cost & Price \({ }^{\text {b }}\) & sessonc & Total present value & Percent of stock harvestod & season \({ }^{\text {c }}\) & Total present value & Percent of stock hervested \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline nont & -- & - & nome & -- & - \\
\hline 6 & -38 & 10 & 6 & -629 & 14 \\
\hline 4-6 & 4,052 & 28 & 4-5 & 2,125 & 26 \\
\hline 3-7 & 12.453 & 42 & 3-6 & 5,454 & 45 \\
\hline 3-8 & 36,233 & 48 & 3-7 & 28,985 & 53 \\
\hline nono & --* & -- & none & -- & -- \\
\hline \(4-6\) & 1,983 & 28 & 4 & -2,589 & 28 \\
\hline 3-7 & 12,669 & 42 & 3-4 & -7,360 & 48 \\
\hline 3-8 & 37,361 & 48 & 3-5 & -7,928 & 63 \\
\hline 2-9 & 47,036 & 58 & 2-4 & -5,401 & 63 \\
\hline 4-5 & -403 & 20 & 4.6\% & -1,713 & 26 \\
\hline 2-6 & 7,025 & 42 & 2-5 & -1.595 & 45 \\
\hline 2-8 & 45,999 & 53 & 2-7 & 33.985 & 60 \\
\hline 1-9 & 66,814 & 63 & 1-7 & 46,540 & 65 \\
\hline 1-10 & 115,532 & 66 & 1-8 & 94,145 & 70 \\
\hline 3-6 & 6,376 & 35 & 3-5 & 3,300 & 37 \\
\hline 2-8 & 33,227 & 53 & 2-6 & 25,255 & 53 \\
\hline 1-9 & 59.274 & 63 & 1-7 & 42,982 & 65 \\
\hline 1-10 & 109.056 & 66 & 1-8 & 92,158 & 70 \\
\hline 1-11 & 162.232 & 70 & 1-9 & 145,609 & 75 \\
\hline
\end{tabular}
Table B2. (conttrued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\underset{(\text { millions })}{\mathbf{x}_{0}}
\]} & \multirow[t]{2}{*}{Cost} & \multirow[t]{2}{*}{Price \({ }^{\text {b }}\)} & \multicolumn{3}{|l|}{Boat-days per week = 540} & \multicolumn{3}{|l|}{Boat-days por week \(=750\)} \\
\hline & & & season \({ }^{\text {c }}\) & Total present value & Percent of stock harvested & season \({ }^{\text {c }}\) & \[
\begin{aligned}
& \text { Total } \\
& \text { prosont } \\
& \text { value }
\end{aligned}
\] & Percent of stock harvested \\
\hline \multicolumn{9}{|l|}{\(q=0.0003\)} \\
\hline 13 & 42.55 & 10w & 5 & -68 & 15 & 5 & -945 & 20 \\
\hline 18 & 42.55 & 10w & 3-5 & 746 & 39 & 3-4 & -2,615 & 37 \\
\hline 23 & 42.55 & 10w & 3-7 & 23,122 & 56 & 3-6 & 14.916 & 60 \\
\hline 28 & 42.55 & 10w & 2-7 & 29,195 & 63 & 2-5 & 14,939 & 60 \\
\hline 33 & 42.55 & low & 2-8 & 58,883 & 68 & 2-6 & 42,171 & 68 \\
\hline 13 & 34.04 & 10\% & 4-6 & 2,214 & 39 & 4-5 & 1,143 & 37 \\
\hline 18 & 34.04 & 10\% & 3-7 & 16,115 & 56 & 3-6 & 9.472 & 60 \\
\hline 23 & 34.04 & 10\% & 2-7 & 26,911 & 63 & 2-6 & 1.9.072 & 68 \\
\hline 28 & 34.04 & \(10 \%\) & 2-8 & 57,689 & 68 & 2-7 & 41,179 & 75 \\
\hline 33 & 34.04 & 10\% & 2-9 & 90,917 & 73 & 2-7 & 75.662 & 75 \\
\hline 13 & 42.55 & high & 2-5 & 4,144 & 48 & 2-3 & 411 & 37 \\
\hline 18 & 42.55 & high & 1-6 & 21,990 & 63 & 1-4 & 7,076 & 60 \\
\hline 23 & 42.55 & high & 1-8 & 67,819 & 73 & 1-6 & 45.797 & 75 \\
\hline 28 & 42.55 & high & 1-9 & 121,070 & 77 & 1-7 & 94,418 & 80 \\
\hline 33 & 42.55 & high & 0-9 & 120,886 & 81 & 0-6 & 78,064 & 80 \\
\hline 13 & 34.04 & high & 2-7 & 22,837 & 63 & 2-5 & 16.397 & 60 \\
\hline 18 & 34.04 & high & 1-7 & 51,240 & 68 & 1-6 & 32,532 & 75 \\
\hline 23 & 34.04 & high & 1-9 & 103,842 & 77 & 1-7 & 82,310 & 80 \\
\hline 28 & 34.04 & high & 0-9 & 113,619 & 81 & 0-7 & 74.809 & 84 \\
\hline 33 & 34.04 & high & 0-10 & 165,852 & 84 & 0-7 & 124,407 & 84 \\
\hline
\end{tabular}
The un rogulated solution was determined by setting \(\lambda\) ogad to zero, which is equivalont to setting the nser cost dqual to zero, as occurs in the open access fishery.
Tho "high" prioe was produced by solving the priee equation using the \(1980-81\) average of the
 price wes produced osing the 1981-82 querage of thesp variables.
 Numbering beginf with zero, For example, an optimal forson of "s-i2"t denotes that the gesson shonld opon at the bogithing of the tixth wepk (dolaying the opening five weps past Dectober 1) and reanin open throngh the thirteenth wobk.
Negative valups reanlted because there was a posttive net
which wis offoet by harvest harvest wis made on a wookly basis.
third week owing to growth in verin the etcond wet, but returned to being profitablo in the third week owing to frowth in vaine.```


[^0]:    ${ }^{n}$ Inclondes the December catch from the previous enlender year, so values are actunl cotches for each haryest season. Onits are in pounds of neats.
    ${ }^{6}$ The coteh 1 initis in bushels por boit pet dey. In some yenfs, an additional litit of bushelt per day per fisherpeg was imposed (shovin in puretthests).

[^1]:    lot cost $=34.04$, high cost $=42.55$ dollars per bont-day.
    Millions of seallops
    ${ }^{c}$ Expected value $=\sum_{j} P_{j} \mathbf{I}_{j}$.
    where $P_{j}$ is the probability of the jth state of the world and $\mathrm{x}_{\mathrm{j}}$ is the payoff for the $j$ th stite of the world.

[^2]:     at $t=7$. ாTrodo

[^3]:    Cumative area onder the comalitive probability distribntion,
    ${ }^{\text {b }}$ Since this difference is positive for each payoff, $t=5$ is stochastically dominant.

[^4]:    Cumolative area nnder the cuanlative probability distribution.
    $b_{\text {Since }}$ this difference is negative at two point $t=6$ is not tochasticaly dominant.

