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CHAFTER 1. IRTRODUCTION

The role for state regulation of fisheries arises from the common
property/open access nature of the resowrce. Without property rights,
individual fishermen ignore the value of the productive capacity of the stock
{also called the opportunity cost of harvesting}. Instead, fishermen attempt
to harvest as much as they can as fast as they can when expected net return
is positive, Under these conditions, serioms depletion of the resource can
occur. The task fzcing the fishery manager is the promumlgation of
regulations designed to ensure continued harvests and, if possible, to
enhance the valuoe of those harvests, The fishery manager must alse be
concerned sbout the trade—off between gains frow regulation and the costs of
regnlation (such as enforcement costs, information costs and administrative
costs). Mest importantly, the fishery manager does not want to promulgate
regulations that are jmcongistent with optimal harvest strategies.

Bioceconomic wodels and optimal control theory can be nsed by fishery
managers to help attain these goals. With s specified objective to be
optimized (such as maximizing net revenue) and = specified comtrol varisble,
or regulatory device (such #s the season opening date), optimal control
theory can be nsed to solve for the optimal harvest of the rescurce over
time. The procedure requires that both the biological and economic aspects
of the fishery be incorporated into a bioeconmemic model. Important
components include the objective funetion, the price function, the fish
production function, the cost function. and functions describing the
population dynamics of the resource stock, Regulations that are based on the
solotion of the optimal contrcl problem will preserve stock for continued
harvests, provide incentives for fishermen to bharvest rationally, #and
improve the overall value of the harvest. By comparing resnlts for the
nnregulated case with results for the optimal solutiom, the manager can get
an estimate of the sconomic gains from regulation, This informetion is
invaluable for deciding if regulations are cost effective.

The fisheries mansgement problem is a problem in capital theory, which
was defined by Dorfman (1969) as ''the economics of time.’”” The fish
population can be viewed as & capital stock that, like ""conventional™ or
man-made capital, is capable of yielding a consumption flow through time.
The wanagement problem thus becomes one of selecting an optimal consumption
path, or harvest path, through time (Clark and Munro 1975). Optimal control
theory is used to solve for this optimal path. In fact, Dorfman (196%) has
shown that optimal control theory is formally identical to capital theory by
deriving the principal theorem of optimal control theory—called the maximum
principle——by means of eccnomic analysis. There are a number of recent works
where theoretical optimal control models are advanced (for example, Clark
1976; Buang et al. 1976; Strand and Hueth 1%77; Clark and Munro 1980; Levhari
et al. 1981; and Conrad and Castro 1983}, but few examples of applications to
specific fishery problems.

The purposes of this paper are 1) to present a general harvesting model
that can be used to address the problem of when to open and c¢lose the harvest
season for a seasonal (intermittent) fishery, 2) to apply the model to the
North Carolina bay scallop fishery and 3) to incorporate uncertainty into the
msnager’s decision process using simulation and stochastic dominamce ruoles.




The seascnonl fisheries model is presented in Chapter 2 and applied to the bay
scallop fishery in North Carolina in Chapter 3. In Chapter 4, stochastic
dominance rules are applied to the bay scallop hervesting problem as an
example of how sconomic decision theory can ephance the usze of optimel
control models.



CHAPTEE 2, A DYNAMIC SEASONAL HARVESTING MODEL

2.1 The General Model

A seasonal fishery can be defined as one in which there are paturally
occuring intraseasonal variations in yields. For these fisheries, economic
inefficiency might result from harvesting the fish too early in the year, Im
the common property/open access situation, individwal fishermen are motivated
to harvest seascnal fisheries early—when stocks are high and before they are
depleted by other fishermen—even though the valuo of the catch may be much
greater later in the season (Agnello and Donnelley 197%). The seasonal
harvesting model presented in this section cam be solved for the optimal
season-opening (and season-closing) schedule such that nat revenue for the
fishery is maximized,

The general fisheries management model for a seasonal fishery can be
formally stated as follows:

marimize
with respect to PY = IH[P(Q,t,w)ﬁ(x.t.yi-C(I.t.yl]e—St $#{t) dt.
*(t) ° _
such that i - F(X,t.z] - ul!:tpz) - G(::tly} '{t)r
x(t,) and t given,
where ®(t) = the control variable { &{t)=0 implies & closed season
and #{i)=1 implies an open seascn),
P(Q,t,¥} = the fish price fumcticn,
Q(x,t,y) = the fish production function, (fishing mertslity),
C{x,t,y} = the cost functicnm,
¢ 8t = the discount functionm,
Fix,t,z) = the population growth function,
M(z,t,z) = the natoral mortality function,

w = vector of exogenous varisbles affecting market price,
z = vector of exogenous environmental variables,

y = vector of exogenous production inputs,

x(t)

population size in numbers,

t = time,



Feasibility constraints snd conditions on fenctions may be desirable for
some problems. For instance, politically infeasible solution sets can
sometimes be incorporated into the problem in the form of constraints on the
state variables. {(See Kamien and Schwartz (1981) for details regarding
necessary and sufficient conditions, endpoint comditions and other conditions
needed for nnique solutions.}) The model can be extended by including
stochastic elements. Stochasticity is important, but rigorous treatment of
stochasticity in applicstions is secondary to refinement of the biological
and ecomomic omodels.

This general model has been formulated with continuouns time and anm
infinite time horizom, Discrete optimal control models can also be
formulated (Johnson 1985; Clark 1976), as well as finite terminal time
problems, The essential difference between mse of finite terminal time and
an infinite time horizon is that the infipite time horizon leads typically to
an optimal steady state, or long-run egmilibrium solwtiom, Fizxheries with
strong stock-recrultment relationships are best modelled with an infinite
time horizon, whereas fish populations that floctuate in abundance from year
te year independent of harvest mctivities—predominantly becaunse of changes
in habitat availability or environmental conditions—can often be modelled
effectively with a finite time horizon (where the time interval is a single
harvest season).

The model is applicable primarily for single year class fisheries. but
it could be used for multi—cohort fisheries in special cases. The indicator
function wonld serve as & "pulse fishing’ control (see Clark 1976, page
174, for a discussion of this type of control variable). However, seasonal
control over the barvest period slone wounld probably not be the control
scchanism most suited for multi—cohort fisheries, since growth rates and user
costs wonld probably vary among the coborts. Regolations on cohort-specific
barvest rates——perhaps in conjunction with season closings——would be
generally more appropriate for multi-cohort fisheries (see optimal hurvest
recommendations of Conrad (1%982) and correction by Hxiao (1935)).

2.1.1 The Cbjective Functional

The objective functionhal is the part of the problem that is to be
mazimized by selection of an *'optimal’ control vector. It contains wmost of
the economic aspects of the problem. In the ahove model, the objective is to
manipulate the control variable 50 as to maximize the discounted value of net
revenue, The objective functional is

j: [P(Q,t.wJQ{x,t.y)-C(x.t.yJ]e_ﬁt #(t) dt.

In words, this represents the sum over all future time pericds of the
pet revenue (total revenuve minos cost) from harvest of the fishery resource
denominated in current dollars (i.e., the present valuwe).



Ideally, the objective function would represent the sum Over all futore
time periods of the mnet benofjits to society from the production and
conspmption of the fishery resonrce, Benefits wonld measnre the aggregate
snbjective valoes placed on fish consumption by each mexber of society in
common units of measure. Costs of production would be measured according to
the value of alternative unses of the inputs (opportunity costs), With costs
and benefits defined in this way, the maximizing solution would he optimal to
society as a whole (maximum social welfare). There may be "*winpers'’ and
rtiosers'’ resulting from regulation, but if regulation is justified, the
losses would be outweighed by the gains.

But this idealistic approach is mot possible in practice for two basic
reasons. First, benefits and costs are inherently subjective and cannot be
observed directly. Second, even if they could be observed and measured, the
most that can be obtained is an ordinal measure {an ordering of preferences).
whereas a cardinal measure is required to trade off benefits and costs among
producers and consumers, Consequently, the theoreticel objective (in terms
of social welfare) must be replaced by & less suitabhle——bnt more
operational—objective. The most common approach im fisheries problems (and
the one nsed in this stody) is to substitute net revenue for society's net
benefit function. (Maximizing net revenue is equivalent to paxzimizing
producer surplus when the price function is infinitely elastic.)

Of course, net revenue¢ is not & perfect measure of social wvalume becanse
it assumes that the marginal ptility of money is the same for all individuals
in society and at all points in time. The value of an extrs fish to a poor
man is takep to be the same as the value to a rich man. Thus, the model is
insensitive to income redistribution. To be responsive to allocational
jsspes related to regulation, it would be desirable to imcorporate income
distribotion features into the objective function. Incorporation of social
and political objectives is also desirable (Crutchfield 1972; Bishop et
al. 1981; VWaungh 1984). The wore '‘realistic’'’ the objective fonction is.
the more wseful the results. Although extension of the objective funection to
include these important factors is theoretically possible, it is difficult to
do in practice. To date, 1ittle work has been done in this ares in applica-
tion to specific fishery problems.

72.1.,2 The Price Functiom

The price function (an inverse demand function), P(G.t,w), describes the
market price of the fishery product. It is typically in units of dollars per
peund. It is osually modelled as a fonction of both quantity and time, of
time only, or as a constant, In addition, exogenous variables such as
personal income and prices of substitutes pight be included.

The most common form of the price fupction in fisheries problems is
infinitely elastic, that is, the fishermen and the regulating authority are
price takers., This occurs when the quantity produced within the jurisdiction
of the mapaging amthority is small relative to the total harvest, and thus
changes in local harvests have little or no impact on price. (Oply the
population within the jurisdiction of the managing authority is modelled in




the optimal coptrol problem,) When price is a function of quantity, it may
be desirable to substitute amother objective function in place of discounted
net revenue becanse consumer surplus is not included in the nmet revenue
calculstion.

21,3 The Prodnction Fupction

The production function, Q{x,t.y), specifies the rate of ountput of &
process over time in terms of its inputs. A typical fisheries produnction
function would inciude the fish stock and fishing effort inputs {vessel size
and nomber, c¢rew size and skill, etc., ospally represented by a single index
1sbelled "effort”). A common representation of the production fumction in
the fisheries literature is the harvest rate, h(t). In this form, the harvest
rate also serves as the control variable, where it is assumed that the social
manager has c¢omplete control over productien. It is alse popular to
represent the harvest rate as a production function with twe inmputs, effort
{E(t)) and the fish stock (x}, as follows:

Qix,t,y) = h{t) = qE(1)x(t),

where q is a "‘catchability' coefficient and is needed to tramsfora E{t)
{measured in nominal terms, such as number of vessels or number of fishermen)
into a fishing mortality rate., This is sometimes referred to as the "catch
per unit effort hypothesis’ (Clark 1976). E{t)q represents fishing
mortality, since it is the proportion of the population size represented by
the catch. Althoogh this preduction function is popular in fisheries work,
there are some important assumptions associated with its use: nom-saturstion
of fishing gear, mno comgestion of fishing vessels, and uniform distribution
of the stock (needed to guarantee a constant q),

A more general functional form for the produnction function is
@(x) ¥(E)}, where ¥(E) defines the effect of fishing effort on a stock (the
mortality rate), and ¢ defines the total fishimg mortality generated by ¥
acting on x. This general form of the preduction function 1s discussed by
Clark {1976) and Hannesson {1983). Relating this functionsl form to the
catch per unit effort kypothesis, W(E)=qE{t) and e{x)=x(t}. Fishing effort
is taken here to be a composite index of imputs consisting of fishing skills,
gize of vessels, crew sixe, fuel, etc, Alternatively, this index can be
disaggregated into its comstituent parts. These variables can then be
modelled either as exogenous variables or, if regulated by the managing
anthority., included as comtrols.

2.1.4 The Cost Functiom

The c¢cost function, C(x,t,y), defines the total costs of producing. or
harvesting, the fish. It is often represented in terms of cost per fish



barvested, €C{x). The harvest rate, h(t), is then munltiplied times the cost
per fish harvested to obtein total costs:

C(l.t.]’) = C(x)h(t).

An alternative representation of costs is cost per unit of effort, C(E),
which iz then multiplied by fishing effort to obtain total costs:

C{x,t,y) = C{E}E(t).

The first representatiom is freguently used in theoretical work wherems the
second is used more in empirical studies (including the present study).

Ideally, the cost functionm would measunre the gpportonjty gogts of
inputs, and not just the accounting costs. For fuel, food and other inputs
that can essily be pot to use in other segments of the population, the market
price is a good estimate of the opportonity cost. But measuring the
oppertunity cost of labor and of the bighly specislired gear often used in
fisherfes is difficult. The cpportunity cost of fishermen is the 2o0cial
value of what their labor would produce in its next-best slternative use.
The incomes received from fishing are usually not a good measure of oppor—
tunity cost, bnt are, instead, the amount necessary to keep them working
(Anderson 19%77), Moreover, opportunity costs vary considerably frem
fisherman to fishermen and even from week to week,

2.1,5 The Discounting Functicn

A discounting function, e_bt, is required in the objective functional
becanse benefits from the fishery are being added up over time by the
integration process, and they must be in common units of value for the sum to
be legitimate. The most general form of the discounting fumction is

c'ft ﬁ(slds'

where 5 is the dommy variable of integration and & is the instantaneous
discount rate. (XIf t is in npits of years, then & is an aprnval discount
rate.) In this form, the discount rate iz allowed to vary over time,

This form is never nzed in applications, however, hecanse 1) the manner
in which &(t) changes over time iy not known, and 2) the problem becomes
difficult mathematically when & is other tham a constant. Consequently, the
discounting function used is typically & °F,

An increage in the discount rate leads to a faster depletion of
exhanstible resonrces, and a decrease leads to a slower depletion., The
choice of an appropriate value for § is the subject of controversy



{Mende lsohn 1981), Whose disconnt rate should be nsed? The fisherman’s? The
banker's? A szocial rate of time preference? The problem is that all of the
consumers and produncers involved have different opportunity costs of
investment {some are lenders and some are borrowers, for exsmplel.
Cetermining one value to represent all of society is difficult. The value
¢hosen for & is very important for infinite time horizon problems, but it is
less important when the time horizon is less thap a year,

2.1.6 Egnations of Motion

The equations of motiom, %, comprise the biclogical sector of the
fisheries management model, The egoations of motion define how the state
variables, x(t), wove throngh time. In a fisheries problem, the state
varisbles nsually define the population dynamics of the species or cohorts
involved. At least one equation of motion for each state variable is
required. When several state variables are present, the cquations of motion
are represented by s system of @ifferential equations, An "initial
condition' is needed for each equnatioz of motion in order to solve the
system of differential equations,

The equationz of motion represent constraints on the availability of the
resource; hence, they are often referred to as ‘‘resonrce constraints.'® A
renewable resonrce {such as a fishery) cannot instantly replace the stock
that is harvested. It takes time to replenish the population. This process
usaally depends on the absolnte stock size, water quality variables, habitat
availability, food availability, predators and other factors. If modelled
fully, the equnations of motion more aptly could be called "ecosystem
constraints,' since they represent how the ccosystem {or ratber, a subset of
the ecosystem) would respond to a prescribed harvest rate of one or more of
the species involved.

The presence of the populstion growth fumctiom, F(x,t,z), in the
equations of motion is what designates the resource as & "‘renewable’’
resource. In general, growth functions are nonlinear and cyclical when
spawning and recruitment occur during a particular time of the year.

Inclusion of water temperature in the growth function is ¢specially
important. Fish are cold-blooded, and thus their growth and metabolic rates
are determined predominantly by water temperature. For this reason, Bell
(1972) and O'Rourke (1971) inclunded temperature in their population
equations, and Hall (1977) extended the Schaeffer yield model to include
temperature. Loucks and Suteliffe (1978) observed correlation: betwsen ocean
temperatures, subseqnent catch of cod and yellowtail flovnder, and fishing
effort. Sissenwine (1974) demonstrated that variability in catch statistics
of the yellowtail flounder fishory correlated well with three and four year
moving averages of atwospheric temperature. Fishery models that ignore the
effects of temperatnre and/or other environmental influences will never erjoy
‘'gocd fits'' when estimated. Note also that constantly changing
environmental jufluences—such as temperaturs——preclude the establishment of
ap equilibdbrium state, at least in the semse of cbtaining sustained yields.



The natvral mortality function, M{a,t,z), is theoretically a function of
population size, water quality variables, the sbundance of predators and
time, Becapse of data constraints, however, natural mortslity functions used
in practice are usupal ly much simpler. Mortality from fishing activity is
simply the fish production function, Q(x,t,y}.

2.2 A Modified Model for Sjngle Year Clasxs Fisheries

The model can be simplified by restricting it to represent single year
class fisheries where the stock-recruitment relationship (embodied in F. the
population growth function) is either fully protected by regulations that
prohibit harvesting during the spawning season or where the stock-recruitment
relationship is overwhelmed by environmental factors. The preponderance of
single yenr class fisheries falls into one or the other of these two groops.
This simplification affects the seasonal harvesting model by changing the
infinite time horizon to a finite time Lhorizon, equal to the potential or
natural season length, The finite time horizon is indicated by t=T in the
model.

Additionnl simplification ¢can be obtained by defiming 2z to be in terms
of numbers of fish rather than in biomass nnits {pounds). This does not
alter any of the fundumental cheracteristics of the wodel, but permits the
model to be expressed in a simpler form, The price variable must be in units
of dollars per fish, rather then in dollars per pound. This is sccompiished
bymultiplying P(Q,t,w) (in units of dollars per pound) by a size function
for individonals in the population (in wumits of pounds per fish). This size
function is designated as g{(z,t) and is theoretically 2 function of
environmental variables (especially water temperature) and time,

The population growth function, F(x,t,z), mezt also be in wnits of
nhmber of fish., Since the stock-recrnitment relationship has been assumed
away, this function consequently reduces to a function of z and t only——
F(z,t), Enife-edge recruitment {when individuals become¢ available to the
fishery 211 at the same time) is modelled by setting Flz,t) equal to zero for
t>0 and equal to the initial population size at t=0, A non-zero F(z.t) for
t>0 represents a recrnitment pattern over time.

The centrol model is now in the form of a model for an exhasustible
resource. The state variable, x {(the number of fish)}, cannot increase during
the time horizom of the control problem except according to s prescribed
recruitment pattern. It can decrease either by natuvral mortality, M(x,t,z),
or fishing mortality, Q(x,t,y). Incorporating these simplifications into the
general model, the seasonal harvesting model for single year class fisheries
is formally presented as:

naximize T '
with respect to PV = IO[P{Q,t,w);(:,tlﬁ(x.t.y}—C(x.t.y)]e_bt S(t) dt.
*(t)
such that i = F(I't) - l(l.t,I) - Q(X.t.j’) '{tjr

x(toi and t, given, 0 { t £ T,




It iz assumed that the decision regarding when to begin harvest iz wmade
prior to the potentisl harvest season and that, once made, it is irrevocable.
That is, the possibility of adaptive management is ignored. Inm actual
practice, however, the season opening/closing schedule conld be re-sssessed
at any time if important additiona] informatiom 1s acquired.

The above model can be applied tomultiple species when more thano oné
species is vulnersble to captuze by the harvesting operation. For example,
several species of shrimp can be included, each with a different state
varisble, size function, etc. Predator and prey species capn be included as
well, Catch of incidental (non-target) species, which usually have little or
no direct commercial value at the time of collection but which may have
commercial value at a later date, ¢an be included in the problem by adding
the appropriste equations of motion and assigning valoe to the "bycatch’ onm
the basis of its eventual commercinl value, (See Waters et al. (1980) and
¥aters (1983) for an example of an ecopmomic analysizs of the foregone walue of
bycatch of immature shrimp in relation to preposed restrictions om the timing
of harvest.)

2.3 General Method for Solving the Seasonal Harvesting Model

The seasonal harvestiog model developed in the last section can be
written in genera] terms by zuppressing all exopgenous variables and combining
functions such as market price, size, etc,, az follows:

maximize T
with respect to PV = I I{t,x(t)) @(t) dt
o(t) °
suck that = f(x(t),t)—Q{x.t,y) &(t)

x(0) given, x{t})}0.
Belating these terms to exzpressions used in Section 2.2, we have

I{t,x(t)) = [PlQ,t,Wglz, )0z, t,y)-Clx,t.y)le B,

and fix{t)y,t) = Fiz,t) ~ Mlx,t,z).

The terminal time, T, is the absolunte time Iimit for the problem, repre-
senting the natursl end of the secason. Since only single year class
fisheries are involved, T can be thought of as the time when any remaining
stock '‘disappears.’” Fishing would cease prior to time T because of
naprofitability.

10



The maximum principle technique is nsed to solve this problem (Clark
1976; Intriligator 1971; EKamien and Schwartz 31981), The maximun principle
says that the optimal control cam be obtained by maximizing a function c¢alled
the ""Eamiltonien’’ at each moment over the time horizon of the problem.
Here, the Hamiltonian function is defined as

Hit,x{(t),alt), &({t)) = I{t,x(t)) @t}

+ A(t)(f(x(t),1)-Q(x.t,7) ®(t)}.

A(t) is 8 vector of edjoint, or co—state variables. There is an adjoint
variable for each state variable in the problem. Since the objective
functional is in terms of net revenue and the state variable is a gquantity,
each sdjoint variable has the dimension of & price, which is called the
*shedow’ price of the state variable {Xatriligator 1971). The shadow price
is the mopetary value of changes in the state variable. In other words, it
is the value of an additional unit of 2 and thus is a measure of the
productive value of the stock, It is also called the marginal nser cost. It
is called & '"shadow’’ price because it is an implicit cost; the manager docs
not actnalily pay it. Given this economic interpretation of Mt), it is clear
that A(t)20 and A{T)=0 in order for the Eamiltomian to be maximized.

There is also an economic interpretation of the Hamiltonian. The
Hamiltonian at time t 16 the net revenne at time t {(the net value of the
catch) plus the value of the changes in the state variables at time t (the
prodoctive valume of the stock)., In other words, the Hamiltonian represents
the total rate of increase of total assets, which in turn is equal to the
valve of sccumnlated dividends {the first term) plus the value of changes in
capital assets (the second term) (Clark 1%76: p.104), Note that in order to
noximize the Hamiltonisn, the decizion maker must know the value of X at each
mowent during the time interval. Furthermere, the value of the Hamiltonian
at T moast equal zero. Otherwise, it would not be optimesl to stop fishing at
T, which is required by the problem formulation. Of course, the Hamiltonian
can 2lso equal zero at any time prior to T.

The solntion is found by solving for @#(t), A{t), and 3(t) that satisfy

the following necessary conditions:

maximize
1) with respect to E{t,x(t),x(t}, #{t)} for each t in (0,T)
it)
2) x = aH/9A = f(xit),t)-Q(x,t,y) &(t), x(0} = x,, and
3) & = —3B/ax = —{al/ox) &{1) — (9f/dx- #(t)aQ/ax}a(t), i(t))0.

4) (T} = 0 and K(T)}=0.

11



Since the Hamiltonjan is linear in the control wariable, the first
condition——maximizing the Bamiltorian-——can be met by simply setting &=0 ox
¢ =1 depending on whether the Hamiltonian is positive ( #=1) or negative
{#=0). Such a solution is known as a bang-bang control. This condition can
be expressed using s switching function:

1 if I(t,x{t)) - a{e)(f{z(t),.t)-GQ{x,t,¥}} > 0O
&{t) =
0  if I(t,x(t)} - A(t){f(zx{t),t}-Q(x,t,¥)} < O.

The switching function depends on x(t} and A(t), which are obtmined by
solving the differential equations, and on the exogencus variables that
determine the catch rate and costs. In general, this will mean solving a
system of 2n simultanecus equations, where n is the number of state
variables.

The sbove necessary conditions are not sufficient conditions, however.
If & is switched to zero before time T (which wonld wsually be the case),
the problem becomes & free end time problem. With a fixed end time problem.
the terminal, or transversality, conditions are the boundary condtitioms for
A. With a free end time problem, iterative techniquos are required. Values
for A at time zero are selected patil the ooe resnlting iz the optimnm
present value is found. These necessary conditions do provide that once the
appropriate A(0) is determined, the solution of #{(t) will be the optimal
solution.

12



CHAPTER 3. APPLICATION OF THE SEASONAL HARVESTING MODEL TO THE
NORTH CAROLINA BAY SCALLOF FISHERY

3.1 Descripticn of the Fishery

The bay scallop fishery in North Carolima is an annual winter fishery.
traditionally opening in December and extending throuvgh early spring. Bay
scallops spawn in their first year and most do not snrvive tc spawn a second
year. Harvesting is prohibited during the spawning peried inm the fall to
ensure continoed harvests im subsegquent years. The state regulatory agency
{North Carclina Department of Natural Rezources and Commonity Development,
Division of Marine Fisheries) controls the sessom opening. Other controls
inclode quotas, restrictions on the days during the week when barvesting is
allowed, closure of the commercial fishery on weekends, restriction of
fishing to daylight hoonrs, and certain gear restrictions designed to provent
destruction of the habitat. Catch limits and the opening dates for harvest
seasons since 1968-1969 are svmmarized in Table 1. Prior to 1969 there were
no catch limits; catch limits were imposed only after widespread use of the
scal lop drag resulted in increased harvest rates, which sometimes exceeded
the processing capacity (Dennis Spitsbergen, Division of Marine Fisheries,
perscnal commnnication).

The fishery is predominantly 3 small-boat fiskery (under 25 feet)
because bay scallops live in shaellow water, Bay scallops are harvested
primarily by use of a scallop drag (dredge or scrape)., This device consists
of a frame aboot a yard wide with a retainer bag of two-inch bar mesh
netting. Scallopers pull from one to four drags behind a motorized boat,
with the most common number being twe. Scallop drags were prohibited from
1935 to 1965. During that time fishermen used scoops or rakes to collect
scallops. Today these methods are usually limited to areas inaccessible by
boat or to periods of low tide. Use of scallop drags with teeth or drags
weighing gresnter than 50 pounds is prohibited to prevent destruction of the
sea grass beds.

Traditionally, fishing has been allowed only on two to three days per
week during the first two months of the season. As the season progresses,
allowed fishing days may be increased to five days per week, Commercial
fishing for scallops is not permitted on Saturdays and Sundays, Scalloping
for private copsomption {recreational fishing) is allowed on weekends during
the open season if barvested by non-mechanical means (rakes, dip nets or by
hand} and thke catch is limited to one—half bushel per fisherman with a
mazimom of one bushel per boat.

Bay s¢allops harvested in North Cerolina are processed in the local
community. Scallops may be shucked by the fishermen themselves, or the
shocking may be contracted to a local fish house (processing plant) and the
meats sold by the fisherman to the wholesaler, or the shell stock may be so0ld
directly by the fishermen to a local fish honse, All scallop processors,
including fishermen who shuck their own scallops, must comply with
regulations of the North Carolinsa Department of BHealth, Shel)llfish Sanitation
Section, which establishes & permit system for the shucking, handling and
packaging of scallops. Fricke (1981) reported that in 1977 approximately 28
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Tabhle 1.

Cateh statistics and summary of regulations op season openings and

catch limits for the bay scallop fishery in North Caroline from 1969-1983.
{Data from the Nationasl Marine Fisheries Service and the North Carolina
Division of Marine Fisheries.)

- o e i R r—e e B e St e B e e [ - L

Year

Total landings

Total ex-vessel

§€4350Nn opening

e o o B A B - -

1968-65
1969-70
1870-71
1971-72
1972-73
1973-74
1974-73
1975-76
1876-717
1977-78
1978-T79
1979-80
158081
1981-82

1982-83

o - ——

for the value for the

harvest sesson® barvest season Date
{pounds) {dollars)

692,290 415,000 Dec
154,783 110,000 Dec
32,972 20,000 Nov
184,652 150, 000 Dec
B48 1,272 Dec
229,600 210,000 Dec
117,888 93,708 Dec
273.572 192,427 Dec
225,012 473,661 Dec
269,708 458,227 Dec
130,928 299,040 Jan
306,319 1,073,006 Dec
226,479 817.,3%6 Dec
128,111 268,985 Nov
161,327 494,964 Nov

of

30

11

0

29

20
None
None

20

40(20)
40(20)
40(20)
40(20)
20(10)
40(20)
15
15

135

%Tncludes the December catch from the préevious calendar yesr, so values are
actual cutches for each harvest season.

The cateh limit is in bushels: per boat per day.
sdditionasl limit of bushels per day per fishermer was imposed (shown in
parentheses).
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percent of the bay scallop harvest was 30ld ss fresh scallops te restaurants
in Carteret County., while tho remsinder (72 percent) was quick-frozen, canned
or cgooked before sale.

In good years, the bay scallop fishery has provided seasonal employment
for 3,000 to 5,000 persons and contributed as much as a tenth of the income
of a full-time fisherman (Fricke 1981}, In addition to full-time fishermen,
many individuals who have full-time johs outside the fishing indusiry harvest
scallops during annual leave or seasonal wnemploywent periods. Season
landings of bay scallops from North Carolina waters have varied considerably,
ranging from less than 1,000 pounds {meat weight) to nearly 700,000 pounds
since 196% {Table 1). Landings have been typically in the 100,000-pound tc
300,000-pound range. Although the bay scallop fishery im North Carolinma is
important locally, it usually constitutes less than one percent of the annuoal
scallop yield in the United States, and an even spaller percentage of the
total supply of scallops when imports are considered.

3.2 The Modetl

The general seazonal harvesting model prezented in the previous chapter
was adapted for application te the North Carolina bay scailop fishery. The
equation of motion was simplified to include only the barvest rate. Since
thére is no recroitment in terms of pumbers during the potential harvest
season, F(z,t) is zero, Naturel mortality during the potentinl harvest
season, M(x,t,z), was assumed to be zero as well. Additionally, it is
postulated that the production function can be represented by the catch-per~
nnit-effort production function, and that the cost function can be repre-
sented by a cost-per-unit-effort function. Incorporating these modifications
into the problem resvlts in the following model for bay scallops:

mazimize T
with respect to PV = j [P(Q.t.w)i(:.t}E(tlqx(t}-cETe_bt (1) dt.
®(t) °
such that x = - B{t)gx(t) &(t)
x{0) given, 0XtT, and x(t)}0,
where P(Q,t,w) = the market price equation in dollars per pound,
Q = quantity (pounds} of the North Carolina bay scallop catch,

w = vector of exogenous variables in the market price eguation,

z = vector of exogenons environmental variables,

g{z,t) = the scellop size eguation in ponnds per scallop,
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E{t)qg = fishing mortality,

¢ = cost per unit of effort,

z(t) = population size in numbers,

t = time in units of weeks starting from December 1, and

#{t) = the decision variable { #(t)=0 implies a closed season and
#{t)=1 implies an open season}.

The potential harvest seéason is defined to span from December 1 (t=0) to
March 31 (t=T). [E{t) is a standard wessure of fishing effort snd q is the
catchability coefficient for the designated uwnit of effort. The weekly
discount rate, &, was set equal to 0.001827 for this study, which is equiva-
lent to am abnnual discount rate of 10 percent. This is a real rate (that is,
the rate after adjusting for inflatien). A real rate dis requnired here becaunse
price and cost are io units of uninflated dollars (1967 dollars).

Each of the components of the harvesting model (soch as the market price
equation, the size equation, etc.) will be discussed in detail in the nmext
section. The calculation of the optimal harvest season will then be
presented in Section 3.4 and research needs will be discussed in Section 3.5,

3.3 Components of the Model

3.3.1 Ex—-vessel Price Eqoation

There are three species of scallops bervested in the United States—bay
scallops, sen zcallops and calico scallops. Sea scallops are barvested in
the northeast Atlantic Ocean by U.8. and Canadian fishermen and constitote
the bulk of the total scallop supply. Calico scallops are harvested
primarily off the coast of Florida. Bay scallops are harvested primarily in
North Carcolins, New TYork, MNassachusetts and Rhode Island, Bay scallops
represent less than 7 percent (since 1976} of the U.8. scallop sopply. The
meats of the three species have nearly the same properties except for size;
sea scallops tend to be larger than bay scallops and calico scallops.

The extent to which the market place discriminates among the three
species is not clear. The three species are probably close substitutes for
some nses and perfect substitutes for other uses, Highest national prices
occur for bay scallops and lowest for calico scellops (Sonth Atlantic Marine
Fisheries Council (1981: Table 5—4). (In North Carolina, however, higher ex-
vessel prices are observed for seéa scallops than for bay scallops.y Ex-
vessel prices of scallops of 811 speciecs in North Caroclina tend to be lower
than the national average. These price differences are probably due to
differences im processing costs and tramsportatiom costs rather thanm
differences in congnmer preference. Nost scallops are frozen and stored for
transportation to inland markets or for later consumption. This creates an
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inventory demand in addition to consumption demand. Furthermore, local
demand for fresh scallops may alsc be zn important factor.

Thus, the demand for bay scallops is a complex interplay of both
consumption and inventory demand, supply of all three scallop species, and
lacal (sessonal) dewand for the fresh product. It is beyond the scope of
this study to model this dewand system fully. Instead, a single-equation
model for North Carclina ex-vessel price was developed and estimated. (The
¢quation cen alternatively be viewed as & reduced-forw eguation with no
supply shifters.) Becanse sea scalleops dominate the scallop market, the
price of bay scallops wonld be expected to be determined to a large degree by
factors that are important in the seaz scallop market,

The demand equation is postulated as follows:
= e
NCQ, = f(INCOME,, NCP,, SEAP,., SEAP{ ., INVENT,, PSHRINP,, CALQ,. TIME),

where NCQt is the demand guantity of North Carolina bay scallops in pounds of
meats (poprocessed), NCP, is the ex-vessel price of North Carolina bay
scallops in dollars per pound of meats, SEAPt is the current period ex-vessel
price of sea zcallops, SEAP:+1 is the expected future ex-vessel price of sea
scallops, INVENT, is the inventory of frozen stocks of scallops at the
beginning of the period t, PSHRIMP, is the ex-vessel price of shrimp, CALQ,
is the landings of calico scallops, and TIME represents a group of varisbles
that account for temporal shifts in demand during the harvest season, SEAP
and PSHRIMPt represent prices of substitutes, and together with INCOME, and
NCPt comprise the standard variables expected in a demand equation, TIKE is
included to capture seasonal changes in demand, which can be important for
products that are available on a strictly seasonal basis. For example, local
demand for fresh scallops may be high when the season first opens, but pay
taper off later in the season, TIME would also capture seasonal changes in
demand that result from increasing size of the west as the season progresses,
assoming that the consumers exhibit a size preferesce. SEAP:+1 and INVENT
represent the inventory demand response in the sex scallop market. The
demand for inventories depends, among other factors, om the expected future
prices and the corrent level of inventory., For example, a higher expected
price for next period might lead to incressed buying in the current period
and a resulting increase in the inventory stock. The CALQt variasble is
included as a demand shifter because high calico scallop Iandings have
sometimes been observed to depress the North Carolina bay scallop market when
the harvests ¢coincided (Dennis Spitsbergen, Division of Marine Fisheries,
personal communication). Calico scallops were landed from North Carclina
beds in 1978 and 1981, and trucked from Florida for processing in North
Carolina in 1981 and 1982 wheo the Florida processing sector could not handle
the volume of scallops harvested.

Prier to estimation, this equation was formulated as a linear equation
and transformed to an inverse demand equstion by solving for NCP. To be
consistent with the time onit used in other aspects of the scallop harvesting
model, TIME was defined in terms of weeks starting from December 1:
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TIME = y,WEBK + y,WEEKZ + v,WEEKS3,

The PSERINP variable was re-defined as a shrimp price index {(published by the
U.S, Department of Commerce in ""Current Fisheries Statistics’™), The inderx
is a Leaspeyres—type price index with 1967 as the base year. All prices and
income were adjusted for infilation prior to the estimation by dividing by the
consumer price index; thus, all prices are im nnits of 19647 dollars. The
final modification was & replacement of SEAP:+1 by a 3-period distributed lag
model, where

SEAPY | = B,SEAP, + B,SEAP,_, + p,SRAP _,.
The resulting price equation is as follows:

Ncpt = ng t l;INCO!Et + I’NCQt + a,SEAPt + l‘SEAPt_l + I.gsmt_z

+ R PSHRIMP, + 1,CALQ, + a,WEEK + s,WEEK? + u,,WEEK® + a,, INVENT,

Monthly data on prices, quantities and income were veed to fit this
model, The data and their sources are preszented in Eellogp (1983), Appendix
A, The wodels were estimnted using data from 19741975 through 1982-19813,
Only datz for the potential harvest season—December through March——were used
in fittiong the model. Since the price ¢quation reqguires time io units of
weeks, the wmidpoint of each month, measured in weeks, was used {(that is,
WEEK = 2.2, 6.6, 10.9 and 15.0 for December, Jannary, February and March,
respectively).

The results of fitting the price equatiom fe shown in Tsble 2. The RZ
was (.708. The three TIME wvariables—¥EEK, WEEK®, and WEEE}-—were tested ss
a gronp for significance and wvere found to be :tatistically significant
(a=0.05) (F,,,,=3.637). The two lagged ses scallop prices were similarly
tested together and also foend to be significant (F;,,,=7.583), The
significant coefficient for CALO reinforces the Divisiom of Marine
Fisheries's perception that the erxatic catches of calico scallops influenced
the price of bay scallops in North Csrolina. (It should be noted that if the
calico scallop harvest becomes more regular, the importance of CALQ in the
price equation wonld diminish, necessitating s re-estimation of the
eguation,) The wariables NCQt. PSHRINP, and INVENT, had nmon-significanmt t-
ratios and remsined non—significant when tested jointly, (F,.;,=0.308). The
lack of importance of the North Carolina harvest (NCQ.) in determining the
ex—vesse] price in North Carclina is not surprising in view of the small
proportion of the total scallop supply represented by the North Carolina
harvest. This result suggests that management actions and regulations, while
they may affect income and yields, will not affect the price of bay scallops.

In applicetions, each of the independent variables will need to be

forecasted in order to ose the above eqnation to predict future prices., It
is therefore important that only the most relevant variables be included.
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Table 2. Statistical results from estimeting the full model for ex-vessel
price of Nerth Carolina bay scallops.

p— - — e

MODEL:
NCP'I‘. = ag + EIINCOHE:: + l‘NCQt + I’SMI + l..,SEﬂPt_I + a,SEAPt_z

+ a,PSHRIKP, + 1,CALQ, + 0,WEEE + &,WEEK? + 2, WEEK® + &,,INVENT,.

SOURCE DF BUK OF SQUARES MEAN SQUARE F-VALUE
MODEL 11 3.54716445 0.32246950 5.06
ERROR 23 1.46592456 0.06373585
CORRECTED TOTAL 34 5.01308901 (PR>F= 0.0005)
RZ = 0.76758 ROOT MSE = 0.25245960

PARAMETER T FOR HO: STD ERROR OF
YARIABLE ESTIMATE PARANETER=0 PR ) |IT| ESTINATE
INTERCEPT -3.62847863 -2.21 0.0375 1.64382944
INCOME,, 0.00379481 1.41 0.1720 0.00269188
NCQ 1.1354418E-06 0.61 0.5454 0.0000018S
SEaﬁt -1.97299849 -3.14 0.0046 0.62789450
SEAP _, 0.68808097 1.15 0.2632 0.59989948
SEAP, 1.77670043 1.90 0.0082 0.61348777
Psnnfuﬁt ~0 . 05640425 -0.32 0.7523 0.17662204
CALQ, ~5,7657525E-07 ~3.42 0.0024 0.00000017
YEEK 0.34991078 1.75 0.0934 0.19991462
WEEK 2 -0.03577499 -1.32 0.2006 0.02714856
WEEK? 0.00098686 0.95 0.3536 0.00104226
INVENT 2.7650218E-08 0.47 0.6426 0.00000006
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The market price prediction equation used in subsequent analyses was
determined by dropping the non-significant variables—-NCO,, PSHRINP_  und
IN?EHTt-—fron the model. Parameter estimates forxr this reguced uodef are
presented in Table 3.

In practice, the equaticn in Tahle 3 will be used to predict prices for
the potential harvest season (December—March). It will thus be necessary to
forecast values for sez scallop price, calico scnllop landings and income.
It is also important that the combination of these variables be near or
within the sample space used to estimate the parsmeters of the equation. It
is possible to use reasonable values for each of the exogenons variables and
get poor price predictions simply because the combination of variables was
not represented in the original dataset. Statistics for cach of the
exogenons variables msed in the estimation is given below as a guide:

STANDARD NINIMON NAXIHUM

VARTABLE N MEAN DEVIATION VALUE VALUE
INCOME | 36 856.5 46.740 763.0 910.0
SEAP 36 1.44 0.332 0.932 2.088
SEAP, , 36 1.44 0.329 0.966 2.088
SEAP, 36 1.44 0.318 0.966 2,088
CALO, 36 347902 363016 0 1253255

For the present study, the season averages of these variables for two
harvest seasons (1980-1981 and 1981-1982) were used:

Variable 1980-81 1981-82
INCOME 882 887
SEAP,=EEAP, | =SEAP, , 2.00 1.31
caLa) 531,369 1,084,457

The 1980-31581 set of values produced a relatively high price path, whereas
the 1981-1982 set produced s relatively low price path,

3.3.2 Scallop Sirxe Equation

The scellop size equation, g(z,t), was developed previously by Eellogs
and Spitsbergen (1983). The growth rate of the scallop meat was modelled us
a function of meat sire and the growth rate of the shell, which were in turn
determined by water temperature. The basic model was a Brody-Bertalanffy
growth equation with a temperature dependent growth coefficient, as follows:
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Table 3. Statistical results from estimating the reduced model for ex-vessel
price of North Carolins bay scallops. Thisz price equation was used ir the
scallop harvesting problem.

RODEL
NCP, = a, + a,INCOME, + n,SEAP, + a,SEAP, ; + 2,SEAP, ,
+ a,CALQ, + a,VEEK + a,WEEK? + a, WEEK®,

SOURCE DF SUM OF SQUARES  MEAN SQUARE F-VALUE
NODEL 8 3,48834848 0.43604356 7.44
ERROR 26 1.52474053 0.05864387
CORRECTED TOTAL 34 5,01308901 (PR>F=0,0001)
k2 = 0.695848 ROOT MSE = 0.24216496

PARANETER T FOR BO: STD FRROR OF
YARIABLE ESTINATE PARANETER=0 PR > |T] ESTIMATE
INTERCEPT -4.24904127 -4.50 0.0001 0.94400997
INCOME, 0.00473008 3.96 0.0005 0.00119327
SEAP, ~1.85448147 -3.38 0.0023 0.54878495
SEAP,_, 0.56224238 1.02 0.3167 0.55072151
SEAP,_, 1.69072116 2.96 0.0065 0.57155936
CALQ, -5.4761407E-07 ~4.15 0.0003 0.00000013
¥EEX 0.386611%4 2.19 0.0378 0.17668992
¥EEK2 ~0.04133764 ~1.74 0.0944 0.02380936
weEx? 0.00119521 1.31 0.2003 0.00090949

o ———— A ——— A A i — —— . o — o S —
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"t - lnlxtl_e"B{C.t]) + lge-B(C’t}r

where B(C.t} = byt + b,C + b,C2/t,

M, = meat size in gramz at time t,
Hﬁ‘x = maximum attainable meat size,
My = initial meat size at t=0 {November 1),
t = time in weeks from November 1, and

C = cumulative water temperature ir  degrees centigrade
{degtee—weoks) from November 1 to time t.

(The scallop size equation developed by Kel Yogg #nd Spitsbergen (1383) has a
different starting time than the harvesting model, mnecessitating =a
modification of the size equation, which is discussed later,)

The model was refined further by substituting an expression for the
masieym size that the meat can attain, I.‘x:

- n
Muax = M85

where St is the Iength of the shell, This is the same general relationship
used commonly in fisheries to relate weight to length. Shell size was then
also modelled as & functicn of cusulative temperature in the same manner as
the meat model, The shell growth model is

S, = 8, (1-e"BslC:t]y 4 g, "BglC.t)

¢t + ¢c,C + C;szts

where Bs(c,t)

[+ ]
™
H

shell length in centimeters at time t,

s = maximom attainable shell size, and

7]
a
]

imitial shell length at t=0 {a variable},

The growth function, BS(C,t). is the zame form as that uszed in the meat model
except that the parameters have different values.

Using the above models, scallop meat size can be predicted for any week
in the potentianl harvest season. The shell size equation is nzed to predict
St, and then that value is substituted into the meat size eqgnation,
Information needed to estimate the size equation includes an initial meénsure
(or estimate) of shell szize on mbout November 1 and projections of cumunlative
water temperature., In applicwtion, the imitial value for shell size can be
estimated by sampling, and an expected water temperature curve could be
constracted on the basis of regional long-term weather predictions and
temperatures prevalent prior to the season,
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Eellogg and Spitsbergen (1983) estimated coefficients for these two
models., Parameter estimates for the meat and shell size models are as
follows (Kellogg and Spitsbergen 1983: Tables 5 and 6):

M, = 2.522 8§ _ = 6.37%
by = —0.4415 ot = -0.0298
b, = 0.0969 ¢, = 0,0063
b, = -0.0034 ¢y, = O

m, = 0.0270

my, = 3

In addition, the variable S, was set equal to 5.9 centimeters, which is the
average shell size for the month of November {(Eellogg and Spitsbergen 1583:
Table 3).

The remaining information needed to c¢alculate meat size is cumulative
water temperature. Using a seven—year database, Kellogg and Spitsbergen
(1983} estimated water temperature {degrses Centigrade} for the Beaufort
Channel as a quadratic in time over the potential harvest season. An
equation for cumnlative water temperature (in degree—weeks) was subsequently
obtained by integrating the original equation with respect to time, The
resulting eguation for “normal’’ cumulative water temperature is:

C=20,200t - 1.012¢2 + 0.027¢3,

where C is cumulative temperature in degree-weeks from November 1 and t is
time in weeks from November 1. (The original equation estimated by Kellogg
and Spitsbergen (1983) included dummy variables for warm and cold winters.
These were set equal to zero here to produce the equation for a *normal’’
winter. Whereas the temperature regime during vnusually cold or warm winters
can influence the optimal season opening/closing schedule, only the mverage,
or normal, temperature regime will be considered in this study.)

There are two unit changes that are necessary before the scallop size
equation cam be compatable with the seasonal harvesting model. First, meat
size is predicted ip grams, whereas the harvesting model requires meat size
in pounds. Thus, the meat size equation was munltiplied by 0,002205 to
convert grams to pounds, BSecond, the time nnit for the meat sixe equation is
weeks starting from November 1, wheress the seasonal harvesting model
reguires time in weeks from December 1. This was reconciled by replacing t
with t+4.3 (4.3 is the nomber of weeks in Novenber) for every t in the size
equation. Consequently t=0 would correspond to December 1 and t=17.3 to
March 31, as required. The resulting size eguation is shown in Figure 1. The
price-per—scallop function, obtained by multiplying the size equation (pounds
per scallop) by the ex—vessel price equation (price per pound) is shown in
Figure 2.
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Figure 1. The bay scallop meat size function, g(z,t), in pounds per scallop.
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Figure 2. Ex-vessel price per scallop, P{w,t)g(z,t), for North Carolina bay
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3,3.3 Fishing Mortality Equnation

The catch per unit effort prodnction function is based on the assumption
th:+ cateh is directly proportional to population size, and that the
proportion is constant over time!

hit) = E{t)qx(t).

The proportion, E{t)q, is called fishing mortality. It is effected by
the pumber of potential scallop fishermen, their harvesting effectiveness,
and the limits to effort that are imposed by regulation, such as catch limits
and limiting the number of days per week when scalloping is allowed. Fishing
mortality is composed of two parts: 1) a standard weasure of fishing effert
(E), and 2} the catchability coefficient (q}. The catchability coefficient
is defined as the fraction of a fish stock that is canght by a standard umit
of fishing e¢ffort (Ricker 1975: p.2). A difficult aspect of anmy fishery
reragerent problem is the definition——and subseguent measurement——of a
stiadard unit of ¢ffort, Theoretically, any unit of effort can be nsed as
iong a3 the associated catchability coefficient is known, or can be measured,

.. #% icng as all other nominal units of effort in the fishery can be
expressed in terms of the standard unit. Almest mo information is available
for either E or q for tbhis fishery, Consequently, only ad hoc estimates of
these variables are possible. Optimal solutions will be calculated for a
renge of reasonable values for El(t)q.

It is desirable to define a stenderd unit of fishing effort to
correspond as ¢losely as possible to the typical, or average, unit of fishing
effort that would be observed in the fishery. For this problem, a standard

. s effort is one boat—day, defined to be & 20-foot boat with a
raxzimem holding capacity of 50 bushels pulling 2 drags and fishing for a full
day or until capacity is reached. Each standard boat-day is assumed to be
panned by the owner and one crew member. This i3 the most common effort
level reported for the fishery (Fricke 1981). A boat capacity limit of 50
bushels is a realistic featnre of the bay scallop fishery becaunse of the
small sire of the boats needed to manenver in the shallow water environment
where bay scallops are found. Jt will also be sssumed that if the boat
¢ .pcity is reached, fishing will stop for that day. (Under presest
t«gulatiops, returning to the fishing grounds after unloading the catch is
illegal because of the daily catch limits.) Individual fishermen may adopt a
pumber of fishing arrangemeats other than the standard onme defined here, but
these arrangements would be converted to standard nnits of fishing effort
when applying the model.

Theoretically, the number of fishermen engaged in scallop fishing at amy
specific moment during the harvest season depends on expected profit (and
thos expected catch, price, and fishing costs) and profitability of
alternative fisheries or employment opportunites. Consequently. fishing
effort should be modelled as sn endogenous variable. Bowever, quantitative
data on fishing effort are mot available for this fishery, preclueding this
approach. Instead, fishing effort will be taken as o gopstant throughout the
season and will represent am "average™ level of fishing effort, Evidence
collected by the DMF during enforcement activities indicated that the pumber
of boats observed fishing for scallops tapers off sharply as the season pro-
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gresses, This is reasoneble since profitability depends on the abundance of
scallops, which decresses as harvesting proceeds., Since information defining
the seasonal zvallebility of fishing effort is not available, an ad hoe
estimate of the seasonal average was made.

Now that a standard unit of fishing effort haz been defined for the bay
scallop fishery, an empirical estimate of it is needed. Fricke (1981)
reported that there were approximately 600 scallop fishermen in North
Carolina, 75 percent of whom were full-time fishermen (engaged in commercial
fisheries all year) and 25 percent of whom were part-time fishermsn (somecne
¥ho bad regular employment outside the commercinl fishing industry.) This
estimate was based on information gathered from key informants in eipht
communities along the ¢coast where most scallop fishermen reside. Fricke
{(1981) also reported that a part—time fisherman was abont half as active in
the fishery as a full-time fisherman, Therefore, the total number of
fishermen was adjusted downward to 525, where each is assumed to be operating
as a full-time fisherman. Assuming two full-time fishermen per boat, the
number of standard nnits of fishing effort (as defined here) is estimated to
bhe 262, The average number of standard units of fishing effort expected to
be active on any given day was assumed to be 180 (69 percent of the waximum
level of 262). Assuming a season average of three good fishing days per week
{and sssuming that the season remains closed on weekends), the weekly effort
level was set equal to 540 boat—days (180 x 3) for the entire North Cerolina
bey scallop fishery. (Note that the use of threc fishing days per week here
has nothing to do with regulations limiting the nomber of fishing days per
week, It is nsed simply in recognition that factors such as poor weather
will preclnde fishing five days per week by all 180 standard mnits of effort.
Note slso that the 180 standard units of effort per day will not correspond
to empirical counts of fishing boats since the fishing boats will not all be
standerd onits’’)

This &d hoc estimate of fishing effort is generally consistent with the
recent historical record of fishing mortality. It is reascmable to expect,
however, that the effort level wonld be higher if the fishery were managed to
maximize returns to the harvesting sector. Under optimal menagement, the
returns from scallop fishing may increase and attract & larger number of
fishermen. Jt is thus desirable to calculate the optimal season cpen-
ing/closing schedule using a larger number of boat-days per week. Optimal
opening/closing schedules were deterwined assuming 750 boat-days per week in
addition to solutions assuming 540 boat—days per week,

With effort (E) in units of boat-days, the catchability coefficient (q)
is the fraction of the scallep population that is harvested by one boat-day.
Since it is defined here to be a constant, it represents an average value
over the sntire barvest period and over all vessels. In actuality, the
catchability coefficient varies from vessel to vessel and even from day to
day for the same vessel. For example, as: the season progresses scallops are
restricted to areas difficult to fish snd for which there is & higher q.
There is no information available that would identify the valme feor q.
Fowever, possible values can be celculated that are consistent with catch
dats from previous yesrs and with the ad hoc estimate of the average number
of standard units of fishing effort, Dsing the catch-per—unit—effort pro-
duction fumction (Eg=h/x), rough estimates of Eq were obtained for the first
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week in January for eight harvest seasomns, (December was not used becaunse of
the possibility that quotas had substantially constrained fishing mortality
and because the nomber of fishing days in December veried frowm year to year.)
The average weekly harvest was calculated for January by dividing the January
catch by 4.4, the number of weeks in Janusry. The population size for the
first week in Jannary was calcnlated by subtracting the December catch from
the population estimate (see Subsection 3.3.5 for methods of estimating total
population size). Estimates of Eq were tbhen obtainmed by dividing the weekly
average January catch by the population estimate for January 1. Assuming 180
standard boat—days per day of effort and 2 flshing days per week (recall that
regulations have limited the number of wllowed fishing days to this sumber
early in the sesson), an ostimate of q for each of the harvest scasons was
calculated by dividing the Eq estimate by 360, Resulting estimates of Eq and
g are shown below:

Barvest scasom Ea_ —a
1974-75 0.088 0.00025
1975-76 0.053 0.00015
197617 0.057 0.00016
1917-7% 0.108 0.00030
1979-80 0.071 0.00020
1980-81 0.098 0.00027
1981-82 0.102 0.00028
1982-83 0.051 0.00014

On the basis of these calcunlations, it appears that fishing mortality
bas ranged from about 5 to 10 percent per week. For the standard unit of
effort defined here, this is eguivalent to q values ranging from abont 0.0001
to 0.0003. Three g values were nsed in this study to calculate optimal
harvesting solmticoms: 0.0001, 0.0002, and 0.0003. These q valmes cozrrespond
te fishing mortalities ranging from 5 to 16 percent per week for E=540 boat-
days per week and T to 22 percent per week for E=750, In the absence of more
specific informatiom, it is believed that these Eq valves bracket expected
fishing mortality for this fishery.

Theoretically., the boat capacity {assumed hexe to be 50 bushels, or
21,750 scallopa) could constrain the ¢atch. The harvest model was altered to
incorporate this feature by adjusting q when constrained as follows:

boat capacity hoat capacity

if t) ¢ . then ssat = .
a(e) population size 1 population gixe

Bowever, for the range of q values and population estimates used in this
analysis, the boat capacity was pot 2 comstraint, (A catch quota can be
incorporated into the model in the same manner by replacing the boat capacity
with the catch limit., Guotas were not modelled in this study since they are
inherently inconsistent with economic efficiency.)
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3.34 Cost Egqumtion

Fishing costs can be catzgorized intc three groups: 1) fixed costs, such
as inpvestment cost of the boat, gear and one—time scasonal maintenance costs,
2) daily fuel costs, and 3) deily opportunity costs of the fisherman, The
last two groups represent variable costs, which can be modelled as being
proportional to fishing effort. Becanse fixed costs sre constant regardless
of the level or timing of fishing effort, they do not affect the optimal
timing of the harvest. Consequently, fixed costs will be ignored in this
apalysis. Anp estimate of fixed costs was provided by Fricke (1981: p.23):
"This is & soall boat fishery and the investment of a typical fisherman in
boat, gear end operating costs, excluding fuel, is on the order of 500 to 800
dollars per scallop season’. Exclusicn of these fixed costs will inflate
the present value calculation, but the magnitude will be very small relative
to the total.

The ¢ost function was therefore modelled as a cost-per—unit-effort
function,

total cost per week = cB,

where E is the number of boat-days per week and ¢ is a constant cost
coefficient., The cost coefficient represenmts the average variable cost per
standard unit of effort, or the average cost per boat day. (Actoal costs for
an individnal fisherman may depart substantislly from this average value.)

¥hereas the cost coefficient is modelled hexre as & constant, there is
good reason to suospect that both daily fuel costs and opportunity costs of
the average fisherman vary over the harvest season, Sessonal vonemployment
trends {(Fricke 1981} suggest that opportunity costs are lowest in January and
Februsry when unemployment in the region peaks. In Narch, alternative
fisheries are more available and nonfishing opportunites (such as tourism
and constrnction) increase. Daily fuel costs might also increzse as the
season progresses, Increases in daily fuel costs would occur a3 fishermen
deplete the resource near their home port and are required to travel farther
each week to fish, Also, honrs spent towing per dey (and thus daily fuel
costs) may imcrease ss the resource is depleted and the stock demsity
decreases. This reasoping suggests thet daily fuel costs may be s function
of stock size rather than sffort, However, the relationship betweesn stock
density and fuel costs is not known, and sc daily fuel costs were modelled on
a per—effort basis.

The opportenity cost of scallop fishermen and the daily opersting costs
were estimated indirectly, Individuals employed in the processing secter
were reported to make about 40 dollars per day (assuming eight hours per day)
hand-shucking scallops in Januvary, 1982 (News and Observer, Raleigh, N. C.,
Sunday, Janvery 31, 1982). This wage was teken as ap estimate of the
opportunity cost of a scallop fisherman, It would be expected that the
fisherman would remain in port and shuck scaillops if his income from fishing
was less than 40 dollars per day. Fricke (1981) cites one freguently
nentioned division of income frowm & day's catch as giving one-third of the
gross to the boat to cover operating expenses {including fonel costs) and
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depreciation, one—third to the owner—ceptain {operator}, and one—-thizrd to the
crew member. If the opportunity cost of a fisherman is 40 dollars per day,
the totsl minimns daily opportunity cost for the two fishermen wonld be 80
dollars and daily operating expenses wonld be 40 dollars wsing this payment
scheme. (Fricke (1981) also reported that daily fuel consumption ranged from
10 to 20 gallons, which is equivalent to about 15 to 30 dollars per day
assuming 1.50 dollars per gallon, Thus, the 40 dollar per day operating
expenze for the boat seems reasonable when other daily non—fuel costs are
considered.) Consequently, the total daily cost per standard unit of effort
js estimsted to be 120 dollars, which is equivalent to 42.55 dollars after
coaversion to 1967 dollars (determined by dividing the pominel amcvnt by the
consumer price index for Jamuary, 1981).

As discnssed in Chapter 2, opportomity costs of fishermen are difficult
to quantify. Depending on relative prices. fishing for oysters or clams
might be a better employment slternative than shucking scallops. Alterna~
tively, some fishermen may face the choice of scallop fishing or mno
employment at all., In this case, their opportunity cost would be much lower
thap that estimated here. The opportunity costs of scallop fishermen can
therefore vary markedly from scason to season and from jndividoal to
individual. Since this cost estimate affects the optimal season
cpening/closing schednle, @ second {lower) estimate of thbe cost coefficienmt
was also calcunlated. Assuming sn opportunity cost of 3.50 dollars per hour
(rather than the 5.00 dollars per hour nsed above) and retaining the 40
dollars per day operating cost, an alternative cost per standard cait of
effort is 34.04 dollars per day in 1967 dolliars. The harvesting problem was
solved for both of these cost estimetes.

3.3.% Equation of Motiom

Because of fortuitous biological chtrietari:tics of the North Carolina
bey scallop, the change in populationm number—the equation of motion——can be
wodelled as equal to the harvest rate, as follows:

x = - Rgx(t) o(t),
3(0) = Zo

Two features of bay scallop biology that permit this simplification are: 1)
there is no recruitment during the potentisl harvest season and 2) natuoral
wortality is believed to be very low during the potential harvest season, and
is assumed to be zero for purposes of this stody,

Whereas natural mortality of bay scallops is high during the spring and
summer, Division of Marine Fisherios biologists believe that the natzral
mortality rate is low during the winter months when barvesting occurs. Low
natorel mortality during this time resnlts because many of the important
predators of bay scallops favor warmer temperatures and bay scallops thrive
at the cooler winter temperatures, The natural mortality rate is not always
near—zaro, however. Mass mortalities cam occur as s result of extremely cold
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temperatures and low salinities, But in the absence of estimates of the
natural mortality rate, the assumptiom of zero natural mortality during the
potential harvest season is reasomable. {Should subsequent studies reveal
significant natural mortality dering the harvest season, the problem ¢an be
expanded to lncorporate natural mortality using en approach similar to that
used by Eellogg {(1985) foxr New River shrimp.)

Since there is no recruitment duoring the harvest season, the recruitment
function, F(z.t), collapses to & simgle initial valmne for popmlation size,
x,. In prsctice, ¥, can be estimated prior to the harvesti se¢ason by
sappling. For tbe present analysis, five valmes of x, that span the range of
probable values were selected. The total catch in numbers for mime harvest
seasons was approximated by converting monthly catch in pounds to cateh in
numbers and summing over the monthly values. (See Kellogg (1985) for
resnlts,) These season catch totals were then adjusted te probable values
for initial population size by dividing the catch total by &n estimate of the
proportion of the scallop population harvested. This proportion is not known
exactly, and probebly varies from year to year. However, because of the
intensity at which scalloping occurs by some of the local fishermen, it is
likely that most of the scallops are harvested cach sesson (Dennis
Spitsbergen, Division of Marime Fisheries, personal communication).
Therefore, a value of 0.75 was used to calculste population estimates,
Resulting estimates ranged from 13 to 33 million scallops (Kelloge 1985).
Valoes of z, selected for use in the present study were 13, 18, 23, 28 and 33
million scallops.

3.4 Caleunlation of the imal Harvesting Period

2.4.1 Statement of the Problem

Incorporating the results of Section 3.3 into the harvesting model in
Section 3.2, the problem can be restated asz follows:

maximize T
with respect to PV = I [P(t.w)s(:.t)qu(t)-cE]B_at #(t) dt,
(1) °
such that x = -Eqx(t) ®(1),

z{0) given, 0{t<T, and x{t}20,

where P{t,w)

ay + ﬁllnmt + I,SEﬁPt + l;SEﬁPtul + a’smt__z

+ "l'mt + oagt + lltz * .-1ot3t

g(x,t) = 0.002205[0 , (1-eB(C- 1)y 4 K o BLC.t)],

B(C,t) = by(t+4.3) + b,C + b,C2/(1+4.3)

1
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3
‘nlx - -"st 4

S, = s“:(l_a-(cl(tM.SH‘c,C)} + s..—(c,(t+4.3)+¢,(:}

C = 20.203(t+4.3) - 1.012(t+4.3)2 + 0.027(t+4.1)3,

t = time in weeks starting from December 1, and

#(t) = the decision variable ( #(t)=0 implies 2 closzed season and
#{t)=1 implies an open sesson),

Coefficijents were estimated in Section 3.3 as follows:

Ay = —4.24504127 M, = 2,522
a; = 000473008 by = —0.4415
8, = -1.85448147 by, = 00969
n, = 056224238 b, = —0.0034
a; = 1.69072116 m, = 0.0270
ay = —0.000000547¢ Sgaz = 6-378
a, = 0.386611%4 ¢y = ~0,0298
a, = —0.04133764 ¢, = 00,0065
;4 = 0.00119521

Exogenous variables were assigned the following valnes:

E = 540 or 750 standard boat-days per week,

g = .0001, .0002 or .0003,

c = 42.55 or 34,04 (1967 dollars),

s = 0.001827,
S = 5.9 coentimeters,
z, = 13, 18, 23, 28, or 33 million scallops,

and the two sets of values for the three e:o-lcnons demand varisbles are shown
below,

High price Low price

Yariable {1980-81) {1981-82)
INCOME 882 887
SEAP =$EAP, | =SEAP, , 2.00 1.31
cALa; 531,369 1,084,457

In summary, there mre two price estimates, two cost estimates, five
population size estimates, three ¢ estimates and twe effort levels. Effort
is held constant throughont the season, the scallop growth rate assumes a
""norxal’’ tempersture regime and assumes growth is the same for all areas.
No quotas are imposed, and fishing is allowed Monday through Friday. Solving
tbe barvesting problem for each of the possible combinations results in 120
separate soluntions. The range of values for each variable was selected with
the purpose of bracketing values most likely to occur. Comsequently, the 120
optimal solutions provide genmeral guidelimes for whea to opem the scallop
season when no prior information or any of the exogencus variables is
available,
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342 Saoluntion Procedure
As discussed in Chapter 2, the maximum principle is nsed to solve for
the optiral opening/closing schedule, @(t}). The Hemiltonian for this

problem is

H(t) = {[P(t,w)g{z,t)Equ(t)—cEle ®t — A(t)}Eqx(t)} a(t),
which leads to the following switching fumction:

1 if [P(t,wglz,t)Eqx(t)-cEle ®t - A(t)Eqz{t) > 0
o(t) =
0 if [P(t,wglz,t)Eqx{t)~cEle™®t ~ A(t)Eqx(t) (0.

The system of differential equations is as follows:
=0 == =x=0 and i=0,

#=1 ==> x = -Eqx(t), =x, given,

i = A(t)Eq - P(t,wlg(z,t)Eqe ot

Sufficient conditions for a solution can not be derived because boundary
conditions for the adjoint equation are not specified. (That is, only the
general solotion of the adjoint equation can be obtained; the particular
solution requires that L be known at some point in time,) The optimal
solution is obtained by varying i(0) (designated as i)} until the &(t)
corresponding to the maximum net present value of the season harvest is
identified,

The optimal opening/closing schedule was determined to the nearest week.
Further precision is probably not warranted in view of the many assumptions
and approxrimations that were made in specifying the problem. The slgorithm
used to solve for the cptimal ®(t) is presented in Appendix A, The program
steps through the potentinl harvest season week by week. The switching
function is solved at the beginning of ecach week to see if the seeson shounld
open or not. If the switching function is negative, the program skips to the
beginning of the next week and repeats the check, If it is positive, the two
differential eguations are sclved nsing a fourth-order Rupge-Kutta pumerical
procedure (Wolfe and Koelling 1983)., The harvest and nat present valve of
the harvest for the week is also ceicnlated within the Runge-Enttas algorithm.
After determining the new x and X, the program advances to the beginmning of
the next week and checks to see if the seéason shounld remain open,
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To demonstrate the switching peint with respect to A, it is pecessary to
resrrange algebraically the switching function as follows:

1 if A(t) < [P(t,wiglz.t) - c/qz(t)]e Ot
¢ =
0 if A(t) > [P(t.wlglz,t)} - c/qz(t}]e St

The term on the right-hand side of the inequality sign isx the discounted net
revenue per scallop harvested, The switching function in this form indicates
that the sesson should remain closed as long as the nser cost per scallop, A,
is grester than the discounted net revenne per scallop harvested. The senson
should cpen at the point where A equals the potential discounted net revenue
per scallop and remain open as long as the marginal discounted net revenue is
greater than the marginal user cost. (This ia nothing more than the familiar
profit mazimization rule of MR=NC.)

An example of the procedure used to obtain the optimal szolution is
iilustrated araphically in Figores 3 and 4, This example wks based on the
solution to one of the 120 combinations indiceted above, In this problem,
Alt) is a nonngnnicnl ly decreasing function of time as long as
A0)<P(t,wig(z,t)e™ %, There is no change in i matil the season opens, after
which A decreases until it gets to zero or nntil the season closes again
(Figure 3). The marginal discounted pet reverne curve increcases to a peak
between the seventh and eighth weeks and then decreases again as the price
per acallop decreases later in the season, A ) equal to 0.011 is 5o high
that it does not intersect the marginal disceunted potential net revenue
cuivw2 a.? rY¢ .rason pever op-p:, Choosing a smaller 10, 1u=ﬂiﬂﬁ. results
in a season opening in the seventh week (t=6). However, the season closes
again after the ninth week with XA =xtill greater than zero. From the
necessary condition that A{T)=0 we know that 1,m0.010 capnot be optimal,
A _=0.007 is tried next. This choice resnlts in & season opeping in the fifth
week (t=4), and A{T)=0 82 reguired.

At this point L ,=0.007 is a contender for the optimal by It meets the
necessary conditions. Bowever, several other values for lo also meet these
ieces55a4ry conditions. The optimal solution 1s found by methodically
se¢arching for the )_ that corresponds to the maximum net present valune of the
season’s barvest, fhil is illaestrated in Figure 4 for the example at hand,
As ) is increased, the cumulative net present value of the harvest increases
to a maximum when )L, is between 0,008 and 0,009, Tkis optimum corresponds to
& seas0n opening at the beginning of the sixth week., Since the solution is
obtained only to the nearest week, there is a rangs of A, s that are optimal,

The lowest marginal discounted net revenne curve shown in Figunre 3 is
for A{t)=0. This represents the present situation in the fishery where the
marginal nser cost is disregarded. In this example, the season would open
(that is, the fishery wonld become profitable) at the beginning of the third
week and would become unprofiteble by the end of the ninth week {a seven—week
interval), The cumnlative net present value for this unregnlated case is
45,999 (1967 dollars), The optimal season {regulated case) starts at the
beginning of the 2ixth week and becowes unprofitable after the eleventh week
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(o siz—week interval), resulting in a comulative net present valuwe of 71,919
(1967 dollars). The conclusion from this example is that delaying the
opening of the seascon increased the commercinl value of the resovurce, and
suggests that the potential gains from bloeconowic management are
substantial.

Obtaining the optimal 10 also results in an optimal sesson closing time.
This is important in establishing the optimal present value of the harvest,
However, it wounld not actunally be regnlated by the regnlatory agency. The
optimal seaxson cleosing time represents the time when it is no longer
profitable to harvest scallops under the assumptions of the model. In
practice, the fishermen will determine when to stop fishing., The focus here
is on opoepjng the season in such & manner as to be consistent with profit
maximjzation and economic efficiency.

The same reasoning applies to the unregnlated case (where A(t)=0}. The
season determined for the unregnlated case reprosenis the time when it is
profitable to harvest scallops ynder tho assumptions of the model. In the
above example, the unregnlated fishery did not operate until the third week
in December, even thoogh fishing during the first two weeks was possible. In
the actoal fishery, fishermen are observed harvesting scallops whenever the
season is open., This discrepancy between the model and ""reality" occurs
becanse of simplifying assumptions used to develop the model. For example,
the model assumes that all fishermen are identical and have the same
opportunity costs. Some fishermen would be fishing when the returns were
below the opportunity costs assumed in the model. Consegquently, any compar-
iton between the cptimal solution (regulated case) and the unregulated case
must be made using the same set of assumptions. This requirement is met by
contrasting the optimal solution to the unregulated scluotion obtained from
the wodel with A(t)=0, (The distinction between the model and what may be
observed ip an actoal fishery is important for understanding how to interpret
the results of the model, but does not diminish their applicability,)

Only a single season opening will resolt for the scallop harvesting
problem under the assumptions of the model., This is obviouns from Figunre 3,
Even without harvesting, the marginal disconnted net revenne curve decreases
after the seventh week, Growth in the valone of the stock after this time is
negative, indicating that delaying the season opening beyond the eighth week
would pever be optimal. If harvesting could be done in a single week, it
wounld take place during the seventh or eighth week. Since there are
constraints on the rate at which harvesting can take place {limited here by
Eq), the optimal solution is a blocked inmterval balanced roughly about the
seventh week, (See Clark (1976, p. 56) for a discuossion of blocked intervals
in conjunction with the fisheries optimal control model.)

3.4.3 Results

The results of the 120 solutions are sommarized in Appendiz B, Table Bl.
Optimal seas0n opebings ranged from the fifth week (t=4) to the eighth week
{(t=7). The most important determinant of the season opening was population
size, At low Bq levels with all factors except pepulation size constant,
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solutions ranged from opening st the fifth week (high initial population
size) to mot opening at all {low imitial population size). The effects of 1,
onp the season opening were less promcunced at the higher Eq valuoes.

Price and cost alzo hed an e¢ffect on the season opening. For a given
poepulation size and fishing mortality, the season opening was generally one
week carlier at the bhigh price level than at the low price level. The twe
cost levels had a similar effect (the lower the cost, the earlier the season
opening) .

The predominant effect of fishing mortality (Eq) on the semson opeming
was in determining whether it was profitable to fish or not. At low Eq
values (less than 0.08), it was generally profitable to fish only at the
higher population levels. Over the range of Eq values from 0.118 (g=0.0002
and E=540) to 0.225 (g=0.0003 and E<750), the optimal season opening varied
by a maximum of one week (o]l other inputs constant) for about ope—-half of
tke input combinantions and did not change for the remaining input
combinations,

The corresponding season for the unregunlated case (A{t)=0) was also
determined for each of the 120 input combinatjomrs. Results are presented in
Appendix B, Table B2, Start of fishing ranged from the first week (t=0) to
the seventh week (t=6). The unregnlsted case is contrasted with the optimal
solutions for E=540 in Table 4. Typicelly, the optimal solution was to delay
opening the season two to three weeks past the start of fisking in the
unregnlated case, Delaying the season opening substantially increased the
present value of the harvest for all comparisops. (It is importanmt to
remember that the ''nnregulated case’ determined here isn’t completely
soregulated. The model still assumes that fishing is not permitted on
weekends or at night, and gear restrictions on the design and weight of the
drag remein iz force,)

3.5 Usefnl Fuitoure EBeoscarch

From the many ad hoc estimates and rapges of values used in the bay
scallop harvesting problem, it is obvions that more research is needed before
the power of this model]l cam be nsed to its follest nt an aid to the
promulgation of optimal regunlation. Foremost on the ""need list* is a
catch-effort dataset. Complete weekly catch statistics including 1) the
number of hours fished per boat, 2) characteristics of the fishing effort
tuch as boat size and crew size, and 3) size and valne of the catch can be
used to estimate the origimal population size wnd the catchability
coefficient. It cen nlso be nsed to develop s relationship between
profitability and the supply of fishing effort. Development of a supply
equaticn for fishing effort is particularly unseful in evaluating the impact
of nanegement practices that differ from current practices. This information
would need to be collacted only until reasconable g estimates have been
determined and a supply equation for effort has been developed.

The price equation will need to be continmally updated. The main
cbjective of the price equation is to forecest. Thus it shomld perform best
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when it is fitted with the wost recent data available. It would be desirable
to update the equation before each season. In addition, a price prediction
equation that was based on weekly prices would perform much better in the
model thap the present squation, which was based on monthly data, Weekly
price data can be obtaimed in comjunction with the catch-effort study
described above.

Another area for more study is the estimation of costs, particularly the
opportunity cost for the "average' scallop fisherman, As seen in the last
section, costs play zn important role in determining the optimal season.
Fishermen with very low opportunity costs would prefer to open the seeson
slightly earlier than those with higher opportunity costs., They wounld also
fish longer in the latter part of the season. Thus, there is no season
opening that is optimal for all individuals, Additionally, there is probably
a sessonal component to fishing costs that is not inclwded in this analysis
that may affect the optimal solution, MNore information on opportonity costs
of scallop fishermen would permit a more refined analysis of the harvesting
problem.

The finel ares for additional research is the quantification of natural
mortality during the harvest season, The solutions presented here are based
on the assumption that there is no natural mortality during the harvest
season. If there are significant sources of natural mortslity competing with
the fishermen for the stock, then the optimal season opening would be earlier
than presented heres.

39



§LS'$9T  TU-§F 988°0ZT 6-0 FEL'TLT  ZTI~§  ZES'STT OL-T 6EP°9E OT-§  $76°87  6~€ £
£92°66T TI-§ OQLO'TZT  6-T BTL'6TT  TI-§ ¥I8°99  6-T 28°ET  6-9 8OP'OT 8- $%
mmc.»magalmnﬁu.hmu-ﬂQﬁa.ﬂnoﬂ:naaa.nv
uﬂ
m«

8-7 Z£§ L rio- ol’f €1
08B0 8L 6-% 066717 - $90°1¢ -9 §20°L -2 —— ¢oon — suou 8T
Lsr'6T 8-9 1’y - 8T38°¢€ 8-L €0¥- §-r — suou —_— euou gy

§§°Th~1t0) ‘qiyg=sotag
PEGYET 0T-§ LI&E"06 6-T LET'LL 01-£ ge0 Ly 6-T ¥80'9 8- E¥9°1L L-¥ ££
9200 34 01~% 689°LS 3-T I RE ] &-% T9E“LE 8-¢ 811 L LOT- 9 8z
0LE'Z9 6-¢ TI6°97 L-T  9LZ°%% 6~9 699°TT L-£ —_ suon _— euGT  £7T
L96°1E §-9 S£IT'91 -t 6Z8°9 8-9 £86°'T - -— LL _— smon @I
POE'R L-9 »IT°'T 9-¥ —_ saou r—— SUoa —_— uon —_— euQuT £l
PO PESITO) “MOT=00FIJ
LEL'LOT  01-¢ ¢£BE8'S8¢ 8-T OLB'TS 6-% ££T'9¢ g§-£ — auou J— JuOT  £f
TOL €L 6-§ S6T°67 L=T OT1'8T -5 1 A 41 i€ -— erou - L300 T
T98°TF 6-9 TIT'ET L~E BETOT 8-9 Tso'¥ o — suoca _— sugux  pf
SIFr LT 8-9 9¥L $-E —— euon 3¢ 9 - 200U -— smow QY
ELE'T L 89- s — smon —— ouou  — omon -— euouw g7

§CTP=I80) ¢ MOT=00F2g

enI®A  WOSWes onIeA  poy3sd enTvA  uWoswWIE suIvAa poyIad oInywA  uwosves onwa pofyed Ox

Iuesead 1wmrido juesard FUTQst] juesexd [wupido juessxd Toygesy juzoseid (emyide juesazd uﬂﬁn-uun
pejeufaa -wnauﬂﬂnuuﬂﬂ pejvinfox -uou-a#uonnn pejerndaz gPo3eInBazun
£000° 0=b T000" Q=B T000 " 0=P

(Cs37usexr 3o uoriwimesssd [Iny ¢ xoJ g ripueddy
20g) *poruotdld oxvw Yoou 30d £LUP-100q Ops O [o0AG] 3IZO0FI® UV J0F #)I0T8X STU) "SINTTOP
LIGT UE $F SU[FPA JTRTIg “FaTqQRTI¢A ynousBoxs jo suopivufqumen Q9 IOoj—-paivin¥arun pug
paivinfesr yioq—Airoqsyy dorTeas suploae) qIION g3 I0J STOTIATOS Furisaarey Jo Lawwgug ' arqu

40



*Yoon Wiuaelxyyl o)y THAOIGT uado
SEIVWaT pur (] IToqmado( 1s5wd Syoom aay) Turuwado aqy Yaridwyop) Yeoa gixts o3 Jo FuiauiEag oyl 3w
soadoc OOS¥IS agl }€Yl $930UEp ,,ZT 03 §,, Jo uosves [evmiydo uw ‘eyduvze x0f -0ISZ T3ta sutrfaq
Surrequny *JoqEesa] OF SABP USAOE JEITF Ol ¥ YO0OA IFIT] oY) oJOoUs SYOOA UF € UOSHeR oW (#I10N

“‘auf9A ur giaoz? o3 Pupao Jaaas pITY} LI WY
arquifyoad Fupeq o3 powinjer jnq ‘Yoom 3I9eArwy puooas o) Furiup eyqeiryord jou swa Lreysyy oyl
‘sTswq L7YeoA ¥ TO JPUIR ETA
183AIPY 03 WOYSIOOP aY] IVYJ [[¥OeY ‘Yoaa o431 3o 33ed I03IV] o) Ur s9s£0] £q 19%)J)0 svA QO
‘yoou oq3 jo FujnuySoq og3 3w mInjexr 310U SAFITsod ¥ EWA QIJ] osOwaQq pPe3[OTAI BOLRA ob«u;uozv
‘SOTQUEINA 3soq) o o¥wrsaw IRST-TE6T °q: Fupsn pasnpord sma
as11xd ,mo1,, 9yl ‘(owoosuy puv ‘s¥uypusl doTIeo® oafres ‘aofad doyreos wes) sarquriva suomsfoxa
aq3 jo e¥wrssv [96T—-0867 943 Buyrsn worywnbe eoyxd egy Fuyajos Lq pecupoad swa edypxd , qirg,, eql,
*sdorwor Jo STOFITTHy
‘Lraqs1} swesaw unado pejwindsiun egy Uy ®aInas0 R¥ ‘0IIT o) [vube 330> Issm a3y Furilaes
0} juefwainbe ot goyga ‘oXeT 03 Tenbe y Furjljes Lq PIUTWMIGIOP ¥wA uworinfos pajeyaterun oqL,

055 EOE €T-F TSH'S9T OT-0 TTP'TIT E€I-¥ TET'TUHT TI-T S69°L9 TI-F TFP'SS I1-T €€
YIL"PET  ZTI-§ 6T9°C€IT 60 &96°#ST  ITT—F 9507601 OQT-1 TI§°LlE OQI-f  S8F°EL 6-7 8T

LLOTLAT  TT-& Z#B°E0T 6-T 9EL"TOI TIT-&  ¥LI"6S 6-T 60E°ET 6-9 GbE°S 8- T
960°¥0T  OTI-§ O¥Z°'1S L-T O0L6" €S 0T-§  LTT EE 8- st¢ L S§TT 9 8T
695° Ly 6-£ LEF'TT L-T PpLP'CT 8-9  9LE’Y9 9-¢ — suos - suoz  £1

#0° E=190) ‘YEIY=eaTIg

ONI®A WOTEIS onfwa pofred JnywAa ooswes onyuva Ppoyred onyva woswes onlva porded non
juederd Teerido juesexd Zoyqer} juesexd pwarido jumesoxd Buyqsy) jmesaid ywmpido jumosoxd BuTqsyy

peruinfes gPaivInfsInn peivwindaa gPoInIndazun peaurniaz gP2isTnlazun

£000"0=b Z000 * O=b 1000 Omb

(panuIILos) ‘p AIqUL

41



CHAPTER 4. INCORPORATING UNCERTAINTY INTO THE MANAGEMENT DECISION

4.1 Introdoction

Application of optimal control models to fisheries management can
greatly enhance the regulator's ability to promulgate regulations that are
consistent with maximization of the social wvalue of the fishery. Bowever,
optimal control theory—like all nothematical optimization techmiques—has
two difficult prerequisites:

1) a model that ceptores the essential biological and econcmic elements
of the fishery in questioa, and

2) perfect knowledge of the future values of exogenmous variables (such
as water temperature, prices of related goods, opportunity costs of
fishermen and gear).

Models can be improved and nev models developed as feedback from the use of
the models motivates additional research and data collection, But futore
values of ¢xogenons variables will never be known with certainty.

The problem that arises from uncertainty is appareunt in the bay scallep
harvesting problem, Five variables were assigned more than one possible
value, resnlting in 120 separate solutions. Four possibilities for the
optimal time to open the sesson resulted. Which one should the regulator
choose? Some variables——such as initial population size—-might be estimated
more closely by collecting additional data before making the management
decision, but the problem of uncertainty remaias,

Another point of difficulty associated with uncertainty is risk
aversion. JIf future values were known, the optimal solution would be
preferred by all members of society, assuming they coculd agree on the
objective function and opportunity costs. But with uncertainty comes &
choice of two or more management strategies, and with that comes the risk of
being wrong, Suppose a regulator chose only one set of exzogenouns variables,
solved the optimum control model &nd promulgated management regnlations,
Some fishermen might prefer to use¢ a smaller population size inm the model,
for example, since there would be & lower probebility that the actual popula-
tiop wonrld fall below it. In doing so, they would be expressing a preference
for mapagement strategies corresponding to a lower but more certain income
over those corresponding to a higher but more gncertain income. Im this
case, the fishermen sre being risk-averse. Most individuals are risk averse
when faced with uncertainty, but to varying degrees. Consequently, it is not
possible to obtain a single solution that pleases everyone in an stwosphere
of uncertainty.

Random processes also affect decision-making. For example, unususlly

favorable conditions will cause individual sczllops to grow more rapidly.
Unusual ly wnfavorable copditions will camnse less rapid growth and may cause
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mortality. To include these effects in the model, = stochagtic term conld be
added to the differentinl eqoation, ax follows:

x = Flx.t,z) - N{z,t,z) - Q{x,t,y) #(t) + alx)dv

where v(t) iz a Weiner process (Malliaris and Brock 1981). A Weiner process
is a Brownian motion process that over any finite interval has a Normsl, zero
mean, unit variance distribution, independent of the distribution over any
non-overlapping interval.

Pindyck (1%84) has investigated the effects of this type of raundomness
in markets for remewable resources, He concludes that im generzl, given a
particular stock level, the net effect of uncertainty on the optimal rate of
barvest is indeterminate. There are effects that tend to increase the
optimag]l harvest rate and zn effect that tends to reduce it. Even if all
fonctions {such as F, M, and Q) were known precisely, problems of uncertainty
might srise due to this random component,

Bconomic decisionm theory can be unsed to partially alleviate these
problems of uncertainty in making mansgement decisions {Winkler 1972). It
requires a complete set of alternative actions, an estimate of the benefits
that would result for each set of exogenons variables, and probabilities for
each set of exogenous varfables. The selection of these probabilities arilses
from the decision maker's preconception of the likelihood of each autcome,
spd thus incorporates the judgment of the manager into the decision making
PIOCEES.

The purpose of this chapter is to 11lustrate the use of stochastic
dominance-~-a decision theory technigue for making decisions under uncer-
tainty. Stochastic dominance rules delineate a set of actions (such as
alternative sesson openings) that would be preferred by all] risk-averse
individuals, Actions not meeting this criteris tam be safely discarded by
the fishery manager, The technigue is applied to the results of the bay
scallop harvesting problem. A payoff matrix with a hypothetical set of
probabilities is developed and presented in Subsection 4.2, and stochastic
dominance is applied to the problem in Subsection 4.3,

4.2 Payoff Mutriz

A payoff matrix is a table showing the benefits for each action and each
‘"state of the world'', The payoff matrix for the bay scallop harvesting
problem with q=0.0002 and Ec540 is presented in Table 5. In this example,
the states of the world are represented by combinations of three exogenous
variables—-price level, cost level and population size, The *‘actions’’
being considered by the decision maker are the four slternstive scason
openings {it=4, &, 6§ or 7).

Benefits were measured as the cumulative net preseat value of the total
harvest. These were determined by finding the optimum A(0) after fizing the
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opening date to one of the four aslternatives, The cumnlative net present
value associated with this A(0) is the maximum payoff for & given opening
date and state of the world {that is, a constrained solution), Use of these
values in the payoff omatrix implicitly assumes that fishermen will optimize
their fishing effort subsequent to the sesson opening, thos stopping at
exactly the optimal time. It is probably not possible for the harvesting
s¢ctor to respond in this way, but the sssumption is necessary to provide a
common basis for calculating pavoffs. Payoffs associated with the
unconstrained optimal solutions are indicated by an asterisk in Table 5.

By construction, none of the four actions dominates the others. That
is, each action is optimal for at least one state of the world. This occurs
becavse each alternative was obtained as a solvtion to the optimal control
model. Examination of the payoff matrixz indicates, however, that most of the
optimal szolutions are associated with t=5 or t=6,

In addition to calculating benefits for esch outcome, probabilities must
be assigped to each value of the exogenous variables. The selection of these
probabilities is important, as the choice may change if the probabilities
change, For variasbles controlled largely by physical factors—soch as water
tempersture--probabilities can be assigned on the basis of distributions of
past events. For other varjables, probabilities most be assigned
subjectively, reflecting the decision maker’'s best judgment, For
illustration purposes, probabilities were pgbitrarily assigned to the two
price levels, two cost levels and five population sizes in the bay scallop
preblem as follows:

Prob(x,=13,000,000) = 1/9 Prob(high price level) = 2/3
Prob({x,=18,000,000) = 2/9 Prob(low price level) = 1/3
Prob(x,=23,000,000) = 3/9

Prob(xy,=28,000,000) = 2/9 Prob(high cost level) = 1/3
Prob(x,=33,000,000) = 1/9 Prob(low cost level) = 2/3

The joint probability for each of the 20 outcomes was calculated as the
product of the three probabilitiecs associated with each set of exogenons
variables. This assuomes the varjables are independent, which is a reasonably
safe assumption here, If independence camnot be assumed, however,
conditicnal probabilities shonld be vsed.

Using these probabilities, the expected value for each of the fonr
alternative actions was calculated (Table 5). Opening the season in the
sixth week (t=5) has the highest expected value {71,135), followed closely by
t=4 (69,871) and t=6 (59,226), Opening the season in the eighth week {t=7)
resnlts in a much lower expected value (20,947), A risk-neotral individuel
would select t=5 as the best season opening, since it has the highest
¢xpected payoff {(given the selected probabilities). A risk-averse
individoal, however, is more interested in the probebilities associated with
the lower payoffs.
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Table 5. Payoff matrizx of comnlative net present value (1967 dollars) fer
the bay scallop harvesting problem (g=0.0002, E=540 boat-days). Asterisks
indicate maximum vejlue for each state of the world,

¥eek of Seaszon Opening

_———— e e o E e A e g —— ——— ———

- —— Joint
State of the world tad t=5 t=5 t=7 probability
Price=low, Cost=high?
2,=13" 0 0 0 0 0.012
T =18 (1] 0 0 0 0.025
Ia=23 4052 8866 10239+ 6613 0.031
14=28 22893 28110 13406 12982 0.025
Iy=33 47180 S1870% 44280 19351 0.012
Price=1ow, Cost=1low
2,=13 0 0 0 0 0.025
Xg=18 1983 3753 6829 4781 0.049
X,=23 21175 25036 25276 11150 D.¢74
Xg=28 46594 49510% 463537 17519 0.04%
Xe=33 74936 712371 67799 23288 0.025
Price=high, Cost=high
x,~13 -403 2460 3789 31 0.025
Te=18 26919 30165 31065 13406 0.049
xg=23 68376 T1919* 654877 23432 0.074
x =28 117791 119718+ 98689 33457 0.049
Xe=33 170996 171734 132500 43483 0.025
Price=high, Cost=1low
X1,=13 12025 14895 15474» 7918 0.04%
x,=18 51637 53920 49197 17943 0.099
x,=23 100642 101736* 83008 27969 0.148
Xg=28 154969* 151419 116820 37994 0.099
I,=33 212422% 201102 1320632 48020 0,049
Expected valne® 69871 71135 59226 20947
Lowest paycff -403 0 0 0
Next-to-lowest payoff 0 2460 3789 3818
1 lo; cost = 34, 04 high cost = 42,53 dol-l-n:; per 'I;;:?—:i:} LLLLLL
Millions of scalleps
¢ =
Expected value = E ijj‘
where P. is the problb:l:ty of the jth state of the world and I is the

payoff f'or the jth state of the world.
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4.3 Application of Stochastic Pomimance

Stochastic dominance rules were derived to choose between two actions
{such as alternative season openings) by comparing the payoff probebility
distribntions., As indicated above, = risk-neutral decision maker needs ooly
an expected value to meke a decistion. But a risk-averse decision maker needs
to know what the tradeoffs are for the eptire range of possibilities.
Consider, for example, the choice between opening the bay scallop seasor at
t=3 versus t=7, The probability distribntions for these two actions are
contrasted in Figure 5. Examination of Figure 5 indicates that most of the
distribution for t=7 is to the left of the distribution for t=5, indicating
that it is associated with lower payoffs in general. (The expected value for
eperning the season at t=5 is over three times that for t=7.)

Stochastic dominance rules provide ctiteria that would be acceptable to
211 risk-averse decision makers for selecting one distribution over another.
¥hen one distribution can be shown to be prefexrred, it is said to
"“dominate’ the other distribution. The dominated distribution—and it's
corresponding action--can then be ¢liminated from the list of alternstives.
A good discussion of stochastic dominance, in¢cluding mathematical proofs and
examples, can be found in Anderson (1974). Only material essential for
onderstanding and applying the procedure is repented here,

There are two categories of stochastic dominance that are used in this
PRper:

1) first degree stochastic domipance (FSP), which applies to all
individuals, incloding those who are risk-loving and risk-neutral,
and

1) second degree stochastic dominance (S8D), which applies only to risk-
averse decision makers.

Additional degrees of stochastic dominance can be generated (see Anderson
(1974)), but they sre applicable to smaller sets of decision makers,

The rules of stochkastic dominance come from the following two theorems
{Anderson 1974):

Theorem 1: The probabdility distribution for action A dominates the
probability distribution for action B by FSD if and only if the
cumulative probebility distribution for action A is legs than or
equal to the cummlative probability distzribution for actiom B at all
payoffs, with strict inequality for st least one payoff.

Theorem 2: The probability distribution for action A dominates the
probability distribotion for acticon B by SSD if and oply if the
cumalative ares under the cumclative probability distribution curve
for action A is less than or equal to that for actjon B at all
payoffs, with strict inequality for at least one payoff,
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The primciple of FSD is demonstrated in Figure 6, The probability
distribution func¢tion for two alternative actions is sbown in the upper
panel, and the comnlative probability distribution is shown in the lower
panel. The distribution for action A is represented by "'***¢/* and that for
action B is represented by ""####''. A dominates B by FSD since the payoffs
for A are higher at every cumulative probability level. (In other words., the
cumulative probability distribution curve for A is to the rjght of--or
occasionally coincident to——that for B over the e¢ntire range of payoffs,) In
this case, all individuals wonld prefer action A to actiom B. If the
cumulative probability distributions were to cross over, ss shown in Figure
7. then the test for FSD fails.

The principle of SSD is demonstrated inm Fignre 7. Two different
probability distributions are contrasted; '*¥988'/! yponyesents action € and
"##H"" represents asction DL Since the cumulative probability distributions
intersect, the FS8D test fails., Up to the point where they c¢ross over, action
C would be preferred to action D because of the higher payoffs at each
probability level. But to the right of the cross—over, the situnation is
reversed and action D results in higher payoffs.

The test for SSD essentially determines whether the decision maker would
trade the gain in payoffs at the low end for the loss at the high end if he
selected action C. To determine thiz, the cummlative area under the
cumplative probability distribution is compared for the two sctions. As the
theorem siates, if the cumulative area for € is consistently less than {or,
at some points, equel to) the comnlstive area for action P, then action C
will dominate by 53D. This iz the situation demonstrated in Figure 7, as
shown in the bottom panel. All risk-averse individuals wonld prefer sction C
to ection D because payoffs for action € are not only higher than those for
action D at the lower payoffs, buot they are high encough to offset the
possibility of Insses at the high end of the pryoff scale. Action D could
never dominate action C, however, because of the potentixl for losses at the
low payoffs. VWhereas some risk-averse decision makers wonld be willing to
make the trudeoff, there are always some who would not.

The calculations needed to establish FSD or 585D canm be time-comsuming
when there are seversl sctions to compare or several states of the world,
The following three corollaries of Theorems 1 and 2 are helpful in reducing
the nomber of comparisons:

Corollary 1: FSD implies SSD,
Corallary 2: The dominating action cannot have the lowest payoff.

Corallary 3: The dominating action must have 2 higher expected
pavoff.

The first two corollaries are readily apparent from Fignres € and 7. The
proof for the last corollary is in Anderson (1974). In the event that the
two distributions have the same lowest payoff with the same probability (as
itz the case in the example below), Corollary 2 extends to the next-to-the-
lowest payoff.
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Figure 6. Graphic e¢xample of first degree stochastic dominance.
Distribntions for action A sre represented by "### and those for actiom
B are represented by "###''. The distribution for sction A dominates B by
FSD.
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Figure 7. Graphic ezample of second degree stochastic dominance.
Distributions for sction € are represented by ''*4%#'* and thoze for action
D are represented by "###'". The distribution for action C dominates I' by
538D,
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Applying these corollaries to the bay scallop problem, there is only one
test possible: Does t=5 dominate t=4? By corollary 3, no acticn can dominate
t=5 since it has the highest expected value, And since t=4 haz a lower
rinipwun payoff, there is the possibility that t=5 can dominate t=4 by FSD or
58D, The lcwest poayoff and its probability are the same for t=5, t=6, and
t=7. BSipce the next-to—the-lowest payoff for t=5 is lower than that for t=¢
sod t=7, it comld not dominate those actions. Similarly, the next-to-the-
lowest payoff for t=6 is less than that for t=7, preventing that comparison.
But becaunse t=~7 has the lowest expected value, it cennot dominate any of the
others,

The probability distribntions, comulative probability distributions, and
cupulative area under the cumplative probability distributions are contrasted
for t=4 and t=5 in Table 6. Comparing the cumulative probebility
distributions, that for t=§ is leszs than that for t=4 at all but one payoff
(indicated in Table 6-2 by an asterisk), cansing the test for FSD to fail.
Bowever, the test for SSD passzed, The cumnlative sarea for t=4 was greater
than that for t=5, indicating that t=5 dominates by 85D. Consequently, the
option to open the season at t=4 can be discarded, leaving t=5, t=6 and t=7
&8 feasible alternatives,

One weakness of the stochastic dominance approach is its emphasis on the
low end of the payeoff scale, For example, it could not be demonstrated that
t=7 was dominsted by any of the other actions, even thovgh it had a much
lower expected value and most of the distribotion was clearly associzted with
lower payoffs. This occurred becanse t=7 was ’"better’ at only one point—
the lowest non-zero payoff (indicated by an asterisk in Table 7).
Forthermore, the difference between the payoffs at this point was only 29
dollars. Only an extremely risk-~averse individvual would be unwilling to
trade this gain for the substantial incresse in payoffs that would ocecnr for
t=6 at all other states of the world, Nometheless, the regulator counld still
discard t=7 from the set of regulatory options, rationalizing thet only a
very small minority wonld object. Thos, thiz analysiz can provide insight
for use in making subjective selections,

At this point, the fishery manager must select cne of the remaining
cptions on the basis of other factors not inmcluded in the problem formu-—
letion. For example, the potentisl for natural mortality to ocenr due to
catastrophic events (such as hurricanes or severe cold) alwaye exists, but is
difficult to define and include in the equation of motion. Another important
factor that is difficuit to mode! is the effects of inclimate weather on
effort levels. Righ winds and sometimes ice and snow cap prevent fishermen
from scalloping. Accounting for theze factors subjectively would favor
opéning the season on one of the earlier alternative opening dates. Also,
pelitical realities may infloence the deciaion,

But even thongh a single ""best’ solution cannot usually be obtained
nsing the combined tools of optimal control theory and stochastic dominance,
the options facing the fishery msnager cam be reduced. Perhaps most

important, the fishory mpppgor has s gnantitative basis oo which to make snd
defend his decjsion.
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Table 6. Distributions for two alternative season openings for bay
scallops~—~t=5 versus t=4—for use with stochastic dominance rules.

Comulative Cumnlative area®
Probability probability -——
distribuotions distributions
L —— ————————— t=4
Payoff t=4 t=5§ t=4 tes t=4 t=5  minus t=5°
-403 025 0 0,025 0 0 0 0
0 .062 062 0.087 0.062 10 0 10
1983 .049 0 0.136 0.062 183 123 60
2480 0 025 0.136 0,087 247 153 85
4052 037 0 0,173 0.087 464 291 173
5753 0 049 0.1713 0.136 758 439 219
BBG6 0 037 0.1%3 0.173 1297 862 434
12025 .049 0 0.222 0.173 1843 1409 434
14895 0 049 0.222 0.222 2430 1505 575
21175 LO074 0 0.2% 0.222 3875 3300 575
22893 L0285 0 0.321 0.222 4383 3681 702
25036 0 LO074 0.321 0.296 5071 4157 914
26919 .0d49 0 0.3710 0.296 5675 4714 961
28110 1] .02 0.370 0.321 6116 5067 1050
30145 [ 049 0.370 0.370 6877 5726 1150
46594 049 0 0.419 G.370 12955 11805 1150
47180 012 0 0.431 0.370 13201 12022 1179
49510 0 049 0.431 G.41% 14205 12884 1321
51637 .09% 0 0.530 0.419 15122 137758 1347
51870 0 012 0.530 0.431 15245 13873 1372
53920 0 099 0.530 G.530 16332 14756 1575
68376 .04 0 ¢.604 0.530 23993 22418 1575
11919 0 074 0.604 0.604 26133 24296 1838
74936 025 0 0.629 0,604 27956 26118 1838
77237 0 .025 0.629 0.629 29403 27508 1895
100642 148 0 0,771 G.629 44125 42230 1895
101736 0 148 .11 0.7 44875 42918 2057
117791 .049 0 0,826 0.777 57449 55392 2057
119718 0 .049 0.826 0.826 59041 56850 2151
15141% 0 .099 0.826 0.925% 85226 B3075 2151
154969 .099 0 0.925 0.925 g8159 B&35e 1800
1709986 . 025 0 0,950 0.925 102983 101183 1800
171734 0 L0258 6.950 0,950 103685 101864 1818
201102 049 0 0.99% 0,950 131584 129764 1818
212422 0 .049 0.999 0,999 142893 140520 2373

SCumulative area under the cumulative probability distribution,
Since this difference is positive for each payoff, t=5 is stochastically
dominant.

32



Table 7, Distributions for two alternative sesson openings for bay
scallops—t=6 versus t=7-—for use with stochastic dominance rules.

—— - o T -_— e e A ———— -

Cumulative Cusmulative area®
Probability probability ——— - -mmmmmm e
distributions distributions

————— A t=7

Payoff t=6 =7 t=6 t=T7 t=6 t=7  minos t=6®
0 062  .062 0.062 0.062 0.0 0.0 o
3789 .025 0 0.087* 0.062  234.9  234.9 0
1818 0 .025  0.087 0.087  237.4  236.7 -1
47181 0 .04%  0.0B7 0.136  321.2  320.5 -1
6613 0 037  0.087 0.173  480.6  569.6 89
6829 049 0 0.136 0.173  499.4  607.0 108
7918 0 049  0.136 0.222  647.5  795.4 148
10239 .0317 0 0.173  0.222  963.2 1310.7 348
11150 0 074 0.172  0.296 1120.8 1512.9 392
12982 0 J025  0.173  0.321  1437.7  2055.2 617
13406 0 049  0.173 0.380 1511.0 2191.3 680
15474 049 0 0.222 0.380 1868.8 2977.1 1108
17519 0 L049  0.222 0.429 2322.8 3154.2 1431
17943 0 099  0.222  0.528 2416.%  3936.1 1519
19351 0 012 0.222  0.540 2729.5  4679.6 1950
23432 0 .0T4  0.222 0.614 3635.5 63833 3248
23888 0 025  0.222 0.639 3736.7 7163.3 3427
25276 074 0 0.296 0.639 4044.9 B050.2 4605
27969 0 148  0.296 0.787 4842.0 9771.0 4929
28406 025 0 0.321  0.787 4971.3 10115.0 5144
31065 049 0 0.370 0.787 $824.9 12207.6 6383
33457 0 049  0.370 0.836 6709.9 14090.1 7380
37994 0 099  0.370 0.935 8388.6 17883.0 9494
43483 0 025 0.370  0.950 10419.5 23015.2 12596
44280 .012 0 0.382 0.950 10714.4 23772.4 13058
46537 049 0 0.431  0.950 11576.6 25916.5% 14340
48020 0 049  0.431  0.999 12215.8 27325.4 15110
49197 .099 0 0.530 0.999 12723.1 28501.2 15778
64877 074 0 0.604 0.999 21033.5 44165.5 23132
67799 .025 0 0.629 0.999 22798.3 47084.6 24286
83008 .148 o 0.777 0.999 32364.8 62278.4 29914
98689 049 0 0.826 0.999 44548.9 77943.7 33395
116820 .099 0 0.925 0.999 5$952%5.2 96056.6 36531
132500 025 0 0.950 0.999 74029.2 111720.9 37692
150632 .049 0 0.999 0.999 91254.6 129834.8 38580

R P A A e o e  ———————— . LA E_ . R R R o e e e e -

Cumulative area under the cusunlative probability distribution,
Since this differemce is negative at two points, t=6 is mot stochastically
dominant.
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CHAPTER 5, SUMMARY AND CONCLUSIONS

A biceconowic optimal contrel model was constructed for the bay scallop
fishery to determine the optimal season opening/closing schedule. Guotss
were not imposed in the wodel, nor were there restrictions on the pusber of
fishing days allowed per week., Other regulations in corrent practice in
North Carolina were maintained. 120 separate sceparios were created using
two price estimates, two cost estimates, five populastion size estimates,
three estimates of the catchability coefficient and two effort levels. Four
possibilities for the optimal time to open the season resulted, ranging from
the second week in January to the first week in Febronary., Applying
stochastic dominance to a subset of these solutions usicpg a set of
hypothetical probabilities for the states of the world reduced the
alternrative opening season dates to three. The current practice of opening
the seasop in early December was sub-optimal for all scenparios,

The corresponding season for the unregulated cese was also determined
for each of the 120 input combinatiors. The unregulated case represents the
time when it is profitable to harvest scellops under the assumptions of the
mode]l but with the opportunity cost of harvesting set equal to zero. Sesson
openings rapged from the first week of Decewbor to the last week of January.
The optimal solution with regulation was typically two—three weeks later than
the solution for the unregulated case, Delaying the seeson opening suhstan-
tially incrensed the present value of the harvest for all comparisons.

The results of this analysis clearly suggest that gains can be obtained
by delaying the opening season for bay scallops beyond the traditional
December opening. The size of the gain depends on prices, costs, population
sizes and other variables. Gains also come from eliminating the guota and
deily fishing restrictions. The basic principle behind optimal harvesting of
a resource through time is to delay harvesting only nntil the imcrease in
value of the resource is no longer greater than the return that could be
obtained by harvesting the resource and investing the proceeds elsevhere,
For an sarnual fishery such as the North Carclina bay scallop fishery, the
optimal harvest strategy would be to apply as much fishing effort to the
fishery as possible (and still maintain profitability to each unit of effort)
once the optimal time to harvest bhas arrived, The restrictions on catch and
effort are inherently inconsistent with this optimal harvestinmg strategy.

While this analysis provides useful insight into the problem of when to
open the bay scallop season, there are severs] aspects of the model that
should be further developed before the model can be routinely used to predict
the season opebing. The assumption of a constant effort level throughout the
eptire hervest season is perhaps the wost implausible aspect of the model.
As discussed earlier, fishing effort is & function of expected profit, which
in turn depends upon costs, market price and the density of the scallop beds.
In addition, effort in the first few weeks of the season is grester because
of perticipation by part—timers who stop fishing when the weather gets colder
and the population becomes less dense. Ip order for the model to be
responsive to these factors, a supply function for effort needs to be
developed in a marner similar to that uvsed by Kellogg (1985) for the New
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River shrimp fishery. At the time of this study, sufficent date for such a
fonction did mot exist, and only ad hoc estimates of fishing effort could be
nsed. (See Section 3.5 for recommendations om further research needs.)

Another oversimplification embodied im the model is the assumption of
zero natural mortality during the harvest season. The effect of non-zero
natural mortality on the solution would be an carlier seasod cpening than
predicted here. (Some insight into the effects of non-zero patural mortality
can be obtained by comparing the effects of different levels of fishing
portality (see Appendix B) on the opening date.} Incorporation of a natural
mortality coefficient in the equation of motion would be » useful refinement
to the model, but this refinewent must await the availsbility of a svitable
mortality estimate.

Bioeconomic optimal control models are not the only input that should be
used by the fishery manager in promplgating regulations. Some aspects of a
fishery are not tasily incorporated into s model, such as income re-
distribution, political realjties, dynamics of ecosysiems, and catsstrophic
weather events. But mapagement models can provide important insights that
cannot be obtained in any other way. For example, it would be difficnlt to
evaluste the cost effectiveness of a proposed regulation without use of a
panagement model. The example presented in this study should be useful as »
guide for development of management models for other fisheries.
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APPENDIX A;

SOLUTION ALGORITHM FOR THE BAY SCALLOP

HARVESTING PROBLEM
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10
20
30
40
50

60

T0
80
90
100
110

120

130
140
150
160
170
180
190
200
210
220
230
240
260
270
280
300
310
320
330
340
360
363
370
80
420

430
440
450
460
470

The following program is written in IBM-PC Basic.

REM BAY SCALLOP PROGRAM
REM
REM FUNCTIONS USED IN THE PROGRAM

REM

DEF FNCUMTEMP(T)=20.203% (T+4.3)-1.012%{T+4.3)"2
+.027*(T+4.3) "3
DEF FNSHELLS(CT,T)=6.378% (1-EXP{,0298% (T+4.3)-.0065*CT)}
+5,.9%EXP(.0298* (T+4.3)-.0065*CT)

DEF FNMAX (SHELLS)=.027*SHELLS "3
DEF FNB(CT,T)=-,4415% (T+4,3)+4.0969*CT-,0034* (CT"2)/{T+4.3)
DEF FNMEAT(MAX,B)=.002205*% (MAX* (1-EXP(-B))+2,522*EXP (-B))
DEF FNDISCOUNT (T)=EXP{(-.001827*T)

DEF FNPRICE(T)=-4.,24904127#+4.73008E-03*INCOME
—1.854481478*SEAP+.562242388*SEAPL1+1.69072116%#*SEAP2
—.0000005476140?#*CALQ+.38661194#*T—4.133764E-02*(T“ZJ
+1.19521E-03%(T"3)

US="#% #3464 § 2. .343133 HELR44 NS 3840 £ _F444
PEEEEE FEREE RRL4333E REREE1RY

REM

REM INITIALIZING VARIABLES AND SETTING CONSTANTS

REM

X0=23000000 'VALUES USED ARE 13, 18, 23, 28 AND 33 MIL.
X=X0

Qg=.0002 'VALUES USED ARE ,0001, .0002 AND .0003

QPRINT=Q

REM SEE LINE 990 AND 770 WHERE Q IS ALSO INITIALIZED
E=540 "VALUES USED ARE 540 AND 750

LIMIT=50%435 'CHANGE "50" TO QUOTA IF DESIRED
CUMPV=0: CUMHARV=0

COST=42.55 '"VALUES USED ARE 42.55 AND 34.04
REM EXOGENQUS VARIABLES FOR THE PRICE FUNCTION

REM VALUES USED ARE: 1980-81 1981-82
REM  —mm—m——ssess oossesesees
SEAP=2! ! 2.00 1,31
SEAP)=21 ! 2.00 1.21
SEAP2=21 ' 2,00 1.31
CALQ=5313691! ' 531,369 1,084,457
INCOME=882 ! 882 Bg7
REM

PRINT 'COST=';COST;'SEAP=";SEAP:“E=';E:"Q=":Q;'X=';X
INPUT "INITIAL VALUE FOR LAMBDA";LAMBDA

REM

PRINT " T™ TAB(4) "SWITCH" TAB{ll) “"PHI™ TAB(1l6) "LAMBDA"
TAB(26) "X" TAB(32) "HARVEST" TAE{(41) "PRICEPER" TAB(53)
npy" TAR(58) "Q* TAB(65) "CUMPV" TAB (72} "CUMHARV"

REM

REM THE MAIN PROGRAM

REM

FOR T=0 TO 17

XPRINT=X
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480
490
500
510
520
530
540
550
5260
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
750
760
770
780
790
795
800
BlO

820
830
840
B30
860
870
£80
890
9¢¢
910
930
940
950
960

970
980
990

LAMPRINT=LAMBDA
IF Q*X>LIMIT THEN Q=LIMIT/X 'CORRECTS Q WHEN LIMIT BINDS
PRICE=FNPRICE (T}
DISCOUNT=PNDISCOUNT(T)
REM
REM CALCULATION OF MEAT SIZE AT TIME T
REM
CT=FNCUMTEMP (T}
SHELLS=PNSHELLS {CT,T)
MAX=FNMAX (SHELLS)
B=FNB (CT,T)
MEAT=FNMEAT {MAX,B)
PRICEPER=PRICE*MEAT
REM
REM CHECK TO SEE IF SEASON SHOULD OPEN THIS WEEK
REM
SWITCH=(PRICE*MEAT*E*Q*X-COST*E) *DISCOUNT-LAMBDA*E*Q*X
REM
IF SWITCH<O THEN PHI=0
IF SWITCR>0 THEN PHI=1
IF SWITCH<0 THEN PV=0
IF SWITCH<0 THEN HARVEST=0
1F PHI=0 THEN GOTO 1410
REM
REM CALCULATION OF NEXT X AND LAMBDA IP SEASON IS OPEN
REM CALCULATES PRESENT VALUE AND HARVEST FOR THE WEEK
HARVEST=0: PV=0
FOR N=1 TO 10
0=.0002
IF Q*X>LIMIT THEN Q=LIMIT/X 'ADJUSTS Q IF LIMIT BINDS
IF Q*X>LIMIT THEN QPRINT=LIMIT/X 'DETECTS  CONSTRAINT
H=.1
REM CALCULATION OF PV AND HARVEST
REM HOLDS MEAT SIZE, PRICE, AND DISCOUNT CONSTANT
FOR THE WEEK
SUBHARV=H*Q*E*X
SUBPV=H* (PRICE*KEAT*E*Q*X-COST*E) *DISCOUNT
HARVEST=HARVEST+SUBHARYV
BV=PV+SUBPV
REM CALCULATION OF X-DOT WITH RUNGE-KUTTA
KOX=-E*Q*X
K1X=-E*Q* (X+.5*H¥K0X)
K2X=~E*Q* (X4 ,5*H¥*K1X}
K3X=-E*Q* (X+H*K2X)
X=X+ (H/6)}* (KOX+2*K1X+2*K2X+K3X)
NEXT N
REM
REM CALCULATION OF LAMBDA-DOT WITH RUNGE-KUTTA
REM ALLCWS DISCOUNT, PRICE AND MEAT SIZE TO CHANGE
WITH EACH ITERATION
REM HOLDS Q CONSTANT AND EQUAL TO Q AT TIME T
REM
Q=.0002 'RE-SETS Q TO Q AT TIME T
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10460
1010
1020
1030
1040
1050
1G60
1070
1480
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430

1440
1445
1446
1450

IF Q*XPRINT>LIMIT THEN Q=LIMIT/XPRINT
REM
FOR J=1 TO 10
H=.1
RT=T+(J-1}*H 'RT STANDS FOR REAL TIME IN WEEKS
REM
REM CALCULATION OF K4
REM
KOL=E*Q*LAMBDA-PRICE*MEAT*Q*E*DISCOUNT
REM
REM CALCULATION OF K1 AND K2
REM
DISCOUNT=FNDISCOUNT (RT+.5*H)
CT=FNCUMTEMP (RT+.5*H)
SHELLS=FNSHELLS (CT,RT+,5%H)
MAX=FNMAX (SHELLS)
B=FNB{CT,RT+.5%H)
MEAT=FNMEAT (MAX,B}
PFRICE=FNPRICE {RT+.5%H)
REH
K1L=E*Q* (LAMBDA+.5*H*K0L) ~PRICE*MEAT*Q*E*DISCOUNT
K2L=E*Q* (LAMBDA+,5*H*K1L) ~PRICE*MEAT*Q*E*DISCOUNT
REM
REM CALCULATION OF K3
REM
DISCOUNT=FNDISCOUNT (RT+H)
CT=FNCUMTEMP (RT+H)
SHELLS=FNSHELLS (CT,RT+H)
MAX=FNMAX (SHELLS)
B=FNB (CT,RT+H)
MEAT=FNMEAT (MAX ,B)
PRICE=FNPRICE (RT+H}
REM
K3L=E*Q* (LAMBDA+H*K2L) -PRICE*MEAT*Q*E*DISCOUNT
REM
REM CALCULATION OF LAMBDA
REM
LAMBDA=LAMBDA+ (H/6) * (ROL+2*K1L+2*K2L+K3L)
NEXT J

IF LAMBDA<D0 THEN LAMEDA=0 "THIS KEEPS LAMBDA POSITIVE
REM

CUMPV=CUMPV+PV 'CALCULATION OF CUM. PRESENT VALUE

CUMHARV=CUMHARV+HARVEST T"CALCULATION QF CUM. HARVEST
PRINT USING U$%;T,SWITCH,PHI,LAMPRINT ,XPRINT,HARVEST,

PRICEPER,PV,QPRINT,CUMFV,CUMHARY

NEXT T

PERCENT=CUMHARV/X0

PRINT "percent=";:;PERCENT

END
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APPENDIX B: OPTIMAL SOLUTIONS TO THE BAY SCALLOP

HARVESTING PROBLEM
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